Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Alexe, G.

  • Google
  • 3
  • 16
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2006Anisotropic spatial correlation of CdSe/Zn(S)Se quantum dot stacks grown by MBE2citations
  • 2004Microstructural study of quantum well degradation in ZnSe-based laser diodescitations
  • 2002On the way to the II-VI quantum dot VCSEL7citations

Places of action

Chart of shared publication
Rosenauer, A.
1 / 15 shared
Hommel, D.
3 / 16 shared
Schowalter, M.
1 / 8 shared
Roventa, E.
2 / 2 shared
Kroger, Roland
3 / 20 shared
Klude, M.
2 / 2 shared
Ueta, A.
1 / 1 shared
Ryder, P.
1 / 1 shared
Leonardi, K.
1 / 1 shared
Michler, P.
1 / 4 shared
Gutowski, J.
1 / 3 shared
Passow, T.
1 / 2 shared
Kruse, C.
1 / 4 shared
Heinke, H.
1 / 1 shared
Ulrich, S.
1 / 81 shared
Sebald, K.
1 / 1 shared
Chart of publication period
2006
2004
2002

Co-Authors (by relevance)

  • Rosenauer, A.
  • Hommel, D.
  • Schowalter, M.
  • Roventa, E.
  • Kroger, Roland
  • Klude, M.
  • Ueta, A.
  • Ryder, P.
  • Leonardi, K.
  • Michler, P.
  • Gutowski, J.
  • Passow, T.
  • Kruse, C.
  • Heinke, H.
  • Ulrich, S.
  • Sebald, K.
OrganizationsLocationPeople

booksection

On the way to the II-VI quantum dot VCSEL

  • Leonardi, K.
  • Michler, P.
  • Hommel, D.
  • Gutowski, J.
  • Passow, T.
  • Kroger, Roland
  • Kruse, C.
  • Klude, M.
  • Alexe, G.
  • Heinke, H.
  • Ulrich, S.
  • Sebald, K.
Abstract

Formation mechanisms of quantum (lots in the system CdSe/ZnSe are thoroughly analyzed in this paper. Defect free QDs are generated by segregation enhanced CdSe reorganisation and not by the Stranski-Krastanov growth mode. Stacking fault formation is enhanced in QD stacks and reduced by using strain compensating ZnSSe spacer layers. For a fivefold QD stack in a laser structure a T(0) value of about 1200K up to 100K was determined by threshold measurements. Electrically pumped lasing at room temperature was achieved above a threshold current density of 7.5 kA/cm(2). Degradation measurements prove a higher stability of QDs against high current injection as compared to quantum wells. High reflectivities of above 99 % for undoped and p-type doped distributed Bragg reflectors based on ZnSe and MgS/ZnSe superlattices have been obtained. Monolithic vertical resonators possess a quality factor of about 100.

Topics
  • density
  • impedance spectroscopy
  • defect
  • current density
  • quantum dot
  • stacking fault