Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ludtke, O.

  • Google
  • 1
  • 6
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2005Multiparameteric oil condition sensor based on the tuning fork technology for automotive applications8citations

Places of action

Chart of shared publication
Matsiev, L.
1 / 3 shared
Uhrich, M.
1 / 1 shared
Kolosov, Oleg Victor
1 / 29 shared
Buhrdorf, A.
1 / 1 shared
Dobrinski, H.
1 / 1 shared
Bennett, J.
1 / 3 shared
Chart of publication period
2005

Co-Authors (by relevance)

  • Matsiev, L.
  • Uhrich, M.
  • Kolosov, Oleg Victor
  • Buhrdorf, A.
  • Dobrinski, H.
  • Bennett, J.
OrganizationsLocationPeople

document

Multiparameteric oil condition sensor based on the tuning fork technology for automotive applications

  • Matsiev, L.
  • Uhrich, M.
  • Kolosov, Oleg Victor
  • Ludtke, O.
  • Buhrdorf, A.
  • Dobrinski, H.
  • Bennett, J.
Abstract

<p>The continuous improvement in engine technology in order to achieve new emission norms have led to an increased amounts of petrol, diesel and soot in the engine oil during engine operation. This dilution causes a fast decrease of the oil properties. Additional, the recommended oil change intervals for automotive engines have continuously been extended over the last few decades. In many cars, this interval is calculated using a set of certain characteristic engine parameters and driving behaviour (oil temperature, engine speed, number of engine ignitions). In order to prevent engine failures as a result of abnormally aged oil, or extreme driving conditions, it is necessary to monitor the oil condition continuously. This can only be reliably realized by means of a sensor directly located in the harsh oil environment of combustion engines. The developed sensor enables the measurement of viscosity, density, permittivity and temperature of the engine oil and provides therefore relevant data for sophisticated oil condition algorithms.</p>

Topics
  • density
  • impedance spectroscopy
  • viscosity
  • combustion