People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sixta, Herbert
Aalto University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2023Polymer-Based n-Type Yarn for Organic Thermoelectric Textilescitations
- 2023Development of cellulose films by means of the Ioncell® technology, as an alternative to commercial filmscitations
- 2021Exploring digital image correlation technique for the analysis of the tensile properties of all-cellulose compositescitations
- 2021Effect of single-fiber properties and fiber volume fraction on the mechanical properties of Ioncell fiber compositescitations
- 2021Fast and quantitative compositional analysis of hybrid cellulose-based regenerated fibers using thermogravimetric analysis and chemometricscitations
- 2021Process-dependent nanostructures of regenerated cellulose fibres revealed by small angle neutron scatteringcitations
- 2021The fiber-matrix interface in Ioncell cellulose fiber composites and its implications for the mechanical performancecitations
- 2020Close Packing of Cellulose and Chitosan in Regenerated Cellulose Fibers Improves Carbon Yield and Structural Properties of Respective Carbon Fiberscitations
- 2019Water-induced crystallization and nano-scale spinodal decomposition of cellulose in NMMO and ionic liquid dopecitations
- 2018Adhesion properties of regenerated lignocellulosic fibres towards poly(lactic acid) microspheres assessed by colloidal probe techniquecitations
- 2018Adhesion properties of regenerated lignocellulosic fibres towards poly (lactic acid) microspheres assessed by colloidal probe techniquecitations
- 2016Deformation mechanisms in ionic liquid spun cellulose fiberscitations
- 2016Ionic Liquids for the Production of Man-Made Cellulosic Fiberscitations
- 2016Wood biorefinery based on γ-valerolactone/water fractionationcitations
- 2016Wood biorefinery based on γ-valerolactone/water fractionationcitations
- 2015Ioncell-Fcitations
- 2015Ioncell-F:A High-strength regenerated cellulose fibre
- 2015Purification and characterization of kraft lignincitations
- 2015Ionic liquids for the production of man-made cellulosic fibers:Opportunities and challengescitations
- 2015High-Strength Composite Fibers from Cellulose-Lignin Blends Regenerated from Ionic Liquid Solutioncitations
- 2014Switchable Ionic Liquids as Delignification Solvents for Lignocellulosic Materialscitations
- 2010Evaluation of experimental parameters in the microbond test with regard to lyocell fiberscitations
Places of action
Organizations | Location | People |
---|
booksection
Ionic Liquids for the Production of Man-Made Cellulosic Fibers
Abstract
<p>The constant worldwide increase in consumption of goods will also affect the textile market. The demand for cellulosic textile fibers is predicted to increase at such a rate that by 2030 there will be a considerable shortage, estimated at similar to 15 million tons annually. Currently, man-made cellulosic fibers are produced commercially via the viscose and Lyocell (TM) processes. Ionic liquids (ILs) have been proposed as alternative solvents to circumvent certain problems associated with these existing processes. We first provide a comprehensive review of the progress in fiber spinning based on ILs over the last decade. A summary of the reports on the preparation of pure cellulosic and composite fibers is complemented by an overview of the rheological characteristics and thermal degradation of cellulose-IL solutions. In the second part, we present a non-imidazolium-based ionic liquid, 1,-diazabicyclo[4.3.0] non--enium acetate, as an excellent solvent for cellulose fiber spinning. The use of moderate process temperatures in this process avoids the otherwise extensive cellulose degradation. The structural and morphological properties of the spun fibers are described, as determined by WAXS, birefringence, and SEM measurements. Mechanical properties are also reported. Further, the suitability of the spun fibers to produce yarns for various textile applications is discussed.</p>