Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ginebra, M. P.

  • Google
  • 6
  • 33
  • 358

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2020Evolution of microstructure and residual stresses in gradually ground/polished 3Y-TZP20citations
  • 2020Influence of grinding/polishing on the mechanical, phase stability and cell adhesion properties of yttria-stabilized zirconia12citations
  • 2019In vivo efficiency of antimicrobial inorganic bone grafts in osteomyelitis treatments28citations
  • 2006Development of a biodegradable composite scaffold for bone tissue engineering89citations
  • 2002Hydroxyapatite ceramic bodies with tailored mechanical properties for different applications83citations
  • 2002Mechanical performance of acrylic bone cements containing different radiopacifying agents126citations

Places of action

Chart of shared publication
Minguela, J.
2 / 3 shared
Slawik, S.
1 / 1 shared
Llanes, L.
2 / 17 shared
Roa, J. J.
2 / 17 shared
Mas-Moruno, C.
2 / 7 shared
Mücklich, F.
1 / 15 shared
Manzanares-Céspedes, M. C.
1 / 1 shared
Canal, C.
1 / 15 shared
Fernandez-Yague, M. A.
1 / 1 shared
Montufar, E. B.
1 / 24 shared
Pastorino, D.
1 / 8 shared
Mestres, G.
1 / 15 shared
Aparicio, Conrado
2 / 42 shared
Engel, E.
1 / 25 shared
Charles-Harris, M.
1 / 2 shared
Aparicio, C.
3 / 22 shared
Navarro, M.
1 / 28 shared
Planell, J. A.
3 / 93 shared
Ginebra, Mp
3 / 289 shared
Ferreira, José Maria Da Fonte
1 / 456 shared
Vallet-Regi, M.
1 / 7 shared
Rodrguez-Lorenzo, L. M.
1 / 1 shared
Ferreira, J. M. F.
1 / 9 shared
Rodriguez-Lorenzo, L. M.
1 / 1 shared
Vallet-Reg, M.
1 / 1 shared
Vázquez, B.
1 / 3 shared
Albuixech, L.
1 / 3 shared
Vazquez, B.
1 / 6 shared
Fernández-Barragán, E.
1 / 2 shared
San Roman, J.
1 / 14 shared
Gil, F. J.
1 / 35 shared
Román, J. San
1 / 2 shared
Fernandez-Barragan, E.
1 / 2 shared
Chart of publication period
2020
2019
2006
2002

Co-Authors (by relevance)

  • Minguela, J.
  • Slawik, S.
  • Llanes, L.
  • Roa, J. J.
  • Mas-Moruno, C.
  • Mücklich, F.
  • Manzanares-Céspedes, M. C.
  • Canal, C.
  • Fernandez-Yague, M. A.
  • Montufar, E. B.
  • Pastorino, D.
  • Mestres, G.
  • Aparicio, Conrado
  • Engel, E.
  • Charles-Harris, M.
  • Aparicio, C.
  • Navarro, M.
  • Planell, J. A.
  • Ginebra, Mp
  • Ferreira, José Maria Da Fonte
  • Vallet-Regi, M.
  • Rodrguez-Lorenzo, L. M.
  • Ferreira, J. M. F.
  • Rodriguez-Lorenzo, L. M.
  • Vallet-Reg, M.
  • Vázquez, B.
  • Albuixech, L.
  • Vazquez, B.
  • Fernández-Barragán, E.
  • San Roman, J.
  • Gil, F. J.
  • Román, J. San
  • Fernandez-Barragan, E.
OrganizationsLocationPeople

article

Development of a biodegradable composite scaffold for bone tissue engineering

  • Aparicio, Conrado
  • Engel, E.
  • Charles-Harris, M.
  • Aparicio, C.
  • Navarro, M.
  • Ginebra, M. P.
  • Planell, J. A.
  • Ginebra, Mp
Abstract

<p>The development of synthetic materials and their use in tissue engineering applications has attracted much attention in recent years as an option for trabecular bone grafting. Bioabsorbable polyesters of the poly(or-hydroxy acids) family, and specifically polylactic acid (PLA), are well known bioabsorbable materials and are currently used for numerous biomedical applications. The incorporation of an inorganic phase, such as a soluble calcium phosphate glass in the P<sub>2</sub>O<sub>2</sub> - CaO - Na<sub>2</sub>O - TiO<sub>2</sub> system, into the polymeric matrix enhances the mechanical integrity of the material. In fact, the flexural elastic modulus increases from 3.2 to 10 GPa with 50 wt/wt % of glass particles. It also improves the biological behavior and modifies the degradation pattern of the polymer. The presence of glass particles accelerates the material degradation and induces the formation of calcium phosphate precipitates in the surface of the composite. Therefore, the combination of a bioabsorbable polymer such as PLA with a soluble calcium phosphate glass leads to a fully degradable composite material with a high bone regenerative potential. The success of a 3D scaffold depends on several parameters that go from the macro- to the nanoscale. The solvent and casting technique, together with particulate leaching, allows the elaboration of 95%-porosity scaffolds with a well interconnected macro- and microporosity. Factors such as surface chemistry, surface energy, and topography can highly affect the cell-material response. Indeed, the addition of glass particles in the PLA matrix modifies the material surface properties such as wettability AI (Area index or real-surface-area/nominal-area ratio) and roughness, improving the cell response and inducing morphological changes in the cytoskeleton of the osteoblasts. This study offers valuable insight into the parameters affecting cell-scaffold behavior, and discusses the special relevance that a comprehensive characterization and manufacturing control of the composite surface can have for monitoring the biological-synthetic interactions.</p>

Topics
  • surface
  • polymer
  • phase
  • glass
  • glass
  • composite
  • precipitate
  • casting
  • leaching
  • porosity
  • Calcium
  • surface energy