People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sin, Gürkan
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2023Mechanistic modeling of industrial fermentation processes for antibiotic production
- 2022DeepGSA: Plant Data-Driven Global Sensitivity Analysis using Deep Learningcitations
- 2019A Simulation-Based Superstructure Optimization Approach for Process Synthesis and Design Under Uncertainty
- 2018Property Prediction of Pharmaceuticals for Designing of Downstream Separation Processescitations
- 2017Powder stickiness in milk drying: uncertainty and sensitivity analysis for process understandingcitations
- 2013Applying mechanistic models in bioprocess development.citations
- 2013Applying mechanistic models in bioprocess development.citations
- 2013Efficient Information and Data Management in Synthesis and Design of Processing Netorks
- 2013Early stage design and analysis of biorefinery networks
Places of action
Organizations | Location | People |
---|
booksection
Applying mechanistic models in bioprocess development.
Abstract
The available knowledge on the mechanisms of a bioprocess system is central to process analytical technology. In this respect, mechanistic modeling has gained renewed attention, since a mechanistic model can provide an excellent summary of available process knowledge. Such a model therefore incorporates process-relevant input (critical process variables)-output (product concentration and product quality attributes) relations. The model therefore has great value in planning experiments, or in determining which critical process variables need to be monitored and controlled tightly. Mechanistic models should be combined with proper model analysis tools, such as uncertainty and sensitivity analysis. When assuming distributed inputs, the resulting uncertainty in the model outputs can be decomposed using sensitivity analysis to determine which input parameters are responsible for the major part of the output uncertainty. Such information can be used as guidance for experimental work; i.e., only parameters with a significant influence on model outputs need to be determined experimentally. The use of mechanistic models and model analysis tools is demonstrated in this chapter. As a practical case study, experimental data from Saccharomyces cerevisiae fermentations are used. The data are described with the well-known model of Sonnleitner and Käppeli (Biotechnol Bioeng 28:927-937, 1986) and the model is analyzed further. The methods used are generic, and can be transferred easily to other, more complex case studies as well.