Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Martinis, J. M.

  • Google
  • 2
  • 7
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2005Electron Probe Microanalysiswith Cryogenic Detectors8citations
  • 2000Microcalorimeter energy-dispersive spectrometry using a low voltage scanning electron microscopecitations

Places of action

Chart of shared publication
Newbury, D. E.
2 / 2 shared
Hilton, G. C.
2 / 8 shared
Small, J. A.
1 / 1 shared
Wollman, D. A.
2 / 2 shared
Bergren, N. F.
1 / 1 shared
Rudman, D. A.
1 / 1 shared
Nam, S. W.
1 / 5 shared
Chart of publication period
2005
2000

Co-Authors (by relevance)

  • Newbury, D. E.
  • Hilton, G. C.
  • Small, J. A.
  • Wollman, D. A.
  • Bergren, N. F.
  • Rudman, D. A.
  • Nam, S. W.
OrganizationsLocationPeople

booksection

Electron Probe Microanalysiswith Cryogenic Detectors

  • Newbury, D. E.
  • Hilton, G. C.
  • Martinis, J. M.
  • Small, J. A.
  • Wollman, D. A.
Abstract

Electron probe X-ray microanalysis (EPMA) is based upon the use of a focused, high current density electron beam, 5 to 30 keV in energy, to excite characteristic X-rays from a picogram mass of a solid target. X-ray spectral measurements are currently performed with the broad bandpass semiconductor energy dispersive X-ray spectrometry (Si-EDS) and/or the high resolution crystal diffraction wavelength dispersive spectrometry (WDS). The strengths and weaknesses of WDS and EDS are mutually complementary. Nevertheless, existing EPMA/WDS/EDS technology has limitations which become extreme when applied to the newly emerging field of low voltage microanalysis, where the beam energy is less than 5 keV. The microcalorimeter EDS provides both high spectral resolution and energy dispersive operational character, two key features of the ideal spectrometer for EPMA. The NIST prototype microcalorimeter EDS achieves impressive performance for EPMA in terms of resolving key elemental interferences, detecting chemical state induced peak shifts, high sensitivity, and applicability to low voltage microanalysis. Further technical developments should extend these capabilities, and commercialization will bring the advantages of the microcalorimeter EDS to critical applications....

Topics
  • density
  • impedance spectroscopy
  • semiconductor
  • laser emission spectroscopy
  • strength
  • Energy-dispersive X-ray spectroscopy
  • current density
  • spectrometry
  • wavelength dispersive X-ray spectroscopy
  • electron probe micro analysis