Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Banerjee, Sumanta

  • Google
  • 2
  • 12
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Synthesis and Structure of Heavy Alkali Metal Pentalenidescitations
  • 2023Three oxidative addition routes of alkali metal aluminyls to dihydroaluminates and reactivity with CO24citations

Places of action

Chart of shared publication
Sanderson, Hugh
1 / 1 shared
Kennedy, Alan R.
1 / 10 shared
Kociok-Köhn, Gabriele
1 / 38 shared
Robertson, Stuart D.
1 / 1 shared
Hintermair, Ulrich
1 / 6 shared
Ballmann, Gerd M.
1 / 1 shared
Evans, Matthew J.
1 / 1 shared
Oreilly, Andrea
1 / 2 shared
Kennedy, Alan
1 / 5 shared
Fulton, J. Robin
1 / 1 shared
Mulvey, Robert
1 / 4 shared
Coles, Martyn P.
1 / 1 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Sanderson, Hugh
  • Kennedy, Alan R.
  • Kociok-Köhn, Gabriele
  • Robertson, Stuart D.
  • Hintermair, Ulrich
  • Ballmann, Gerd M.
  • Evans, Matthew J.
  • Oreilly, Andrea
  • Kennedy, Alan
  • Fulton, J. Robin
  • Mulvey, Robert
  • Coles, Martyn P.
OrganizationsLocationPeople

article

Synthesis and Structure of Heavy Alkali Metal Pentalenides

  • Sanderson, Hugh
  • Kennedy, Alan R.
  • Kociok-Köhn, Gabriele
  • Robertson, Stuart D.
  • Hintermair, Ulrich
  • Banerjee, Sumanta
Abstract

<p>The solid-state structures of the first rubidium and caesium pentalenides [Rb(THF)]<sub>2</sub>[Ph<sub>4</sub>Pn] and [Cs(THF)]<sub>2</sub>[Ph<sub>4</sub>Pn] have been determined by single crystal X-ray diffraction. Both were found to be polymeric in the solid state through interactions of the cations with the phenyl substituents, in contrast to their lighter group 1 congeners which are monomeric for lithium and sodium, and THF-bridged for potassium. Both [Rb(THF)]<sub>2</sub>[Ph<sub>4</sub>Pn] and [Cs(THF)]<sub>2</sub>[Ph<sub>4</sub>Pn] displayed increased η<sup>8</sup> coordination, demonstrating a shift towards higher hapticities down the group as previously predicted computationally for the parent M<sub>2</sub>[Pn] complexes (M=group 1 metal). The solid-state structures of the polydentate donor adducts [M(DME)<sub>x</sub>]<sub>2</sub>[Ph<sub>4</sub>Pn] (M=Li, x=1; M=Na, x=2) and [M(Me<sub>6</sub>TREN)]<sub>2</sub>[Ph<sub>4</sub>Pn] (M=K, Rb, Cs) were all monomeric and displayed increased metal-carbon distances and decreased ring slippage values relative to the THF adducts.</p>

Topics
  • single crystal X-ray diffraction
  • single crystal
  • Carbon
  • Sodium
  • Potassium
  • Lithium
  • Rubidium
  • Caesium