Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bobev, Svilen

  • Google
  • 5
  • 14
  • 39

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2023Synthesis, crystal and electronic structure of the Zintl phase Ba<sub>16</sub>Sb<sub>11</sub>. A case study uncovering greater structural complexity via monoclinic distortion of the tetragonal Ca<sub>16</sub>Sb<sub>11</sub> structure type.5citations
  • 2023The Electronic and Thermoelectric Transport Properties of Zintl Pnictides1citations
  • 2021Single crystal growth and characterization of new Zintl phase Ca<SUB>9</SUB>Zn<SUB>3.1</SUB>In<SUB>0.9</SUB>Sb<SUB>9</SUB>8citations
  • 2021Structural Origin of Reversible Li Insertion in Guest‐Free, Type‐II Silicon Clathrates18citations
  • 2021Electrochemical Lithium Alloying Behavior of Guest-Free Type II Silicon Clathrates7citations

Places of action

Chart of shared publication
Ovchinnikov, Alexander
2 / 10 shared
Samarakoon, S. M. Gayomi K.
1 / 1 shared
Ogunbunmi, Michael O.
1 / 1 shared
Calderón-Cueva, Mario
1 / 1 shared
Rylko, Megan
1 / 2 shared
Marshall, Mack
1 / 1 shared
Smiadak, David M.
1 / 1 shared
Baranets, Sviatoslav
1 / 1 shared
Zevalkink, Alex
1 / 1 shared
Weller, J. Mark
1 / 1 shared
Dopilka, Andrew
2 / 2 shared
Chan, Candace K.
2 / 3 shared
Childs, Amanda
2 / 2 shared
Peng, Xihong
1 / 1 shared
Chart of publication period
2023
2021

Co-Authors (by relevance)

  • Ovchinnikov, Alexander
  • Samarakoon, S. M. Gayomi K.
  • Ogunbunmi, Michael O.
  • Calderón-Cueva, Mario
  • Rylko, Megan
  • Marshall, Mack
  • Smiadak, David M.
  • Baranets, Sviatoslav
  • Zevalkink, Alex
  • Weller, J. Mark
  • Dopilka, Andrew
  • Chan, Candace K.
  • Childs, Amanda
  • Peng, Xihong
OrganizationsLocationPeople

article

Synthesis, crystal and electronic structure of the Zintl phase Ba<sub>16</sub>Sb<sub>11</sub>. A case study uncovering greater structural complexity via monoclinic distortion of the tetragonal Ca<sub>16</sub>Sb<sub>11</sub> structure type.

  • Ovchinnikov, Alexander
  • Samarakoon, S. M. Gayomi K.
  • Bobev, Svilen
Abstract

<jats:title>Abstract</jats:title><jats:p>The binary Zintl phase Ba<jats:sub>16</jats:sub>Sb<jats:sub>11</jats:sub> has been synthesized and structurally characterized. Detailed studies via single‐crystal X‐ray diffraction methods indicate that although Ba<jats:sub>16</jats:sub>Sb<jats:sub>11</jats:sub> appears to crystallize in the tetragonal Ca<jats:sub>16</jats:sub>Sb<jats:sub>11</jats:sub> structure type (space group <jats:italic>P</jats:italic><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/zaac202300148-math-0001.png" xlink:title="urn:x-wiley:00442313:media:zaac202300148:zaac202300148-math-0001" /> 2<jats:sub>1</jats:sub><jats:italic>m with a</jats:italic>=13.5647(9) Å, <jats:italic>c</jats:italic>=12.4124(12) Å, <jats:italic>Z</jats:italic>=2, <jats:italic>R</jats:italic><jats:sub>1</jats:sub>=3.14 %; <jats:italic>wR</jats:italic><jats:sub>2</jats:sub>=4.77 %), there exists an extensive structural disorder. Some Ba<jats:sub>16</jats:sub>Sb<jats:sub>11</jats:sub> crystals were found to be monoclinic and the structure was solved and refined in space group <jats:italic>P</jats:italic>2<jats:sub>1</jats:sub> (<jats:italic>a</jats:italic>=18.3929(12) Å, <jats:italic>b</jats:italic>=13.5233(8) Å, <jats:italic>c</jats:italic>=18.3978(12) Å, <jats:italic>β</jats:italic>=94.6600(10)°; <jats:italic>Z</jats:italic>=4, <jats:italic>R</jats:italic><jats:sub>1</jats:sub>=5.84 %; <jats:italic>wR</jats:italic><jats:sub>2</jats:sub>=9.58 %). The latter corresponds to a 2‐fold superstructure of the tetragonal one, which provides a disorder‐free structural model. In both descriptions, the disordered tetragonal and the ordered monoclinic superstructure, the basic building units that make up the structure of this Ba‐rich compound are pairs of face‐shared square antiprisms of Ba atoms, which are centered by Sb atoms. The dimerized antiprisms are linked into parallel chains via square prisms of Ba atoms, which are also centered by Sb atoms. The Zintl concept can be applied in a straightforward manner and as result, the structure of Ba<jats:sub>32</jats:sub>Sb<jats:sub>22</jats:sub> (=2×Ba<jats:sub>16</jats:sub>Sb<jats:sub>11</jats:sub>) can be rationalized as (Ba<jats:sup>2+</jats:sup>)<jats:sub>32</jats:sub>(Sb<jats:sup>3−</jats:sup>)<jats:sub>20</jats:sub>[Sb<jats:sub>2</jats:sub>]<jats:sup>4−</jats:sup>. The partitioning of the valence electrons is done taking into an account the homoatomic Sb−Sb contacts (<jats:italic>d</jats:italic>=3.01 Å), which can be clearly distinguished in the lower symmetry space group. Electronic structure calculations of Ba<jats:sub>16</jats:sub>Sb<jats:sub>11</jats:sub> are in good accordance with the Zintl rationalization and predict a semiconductor with a band gap of 0.77 eV.</jats:p>

Topics
  • impedance spectroscopy
  • compound
  • phase
  • semiconductor
  • space group
  • diffraction method