People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ovchinnikov, Alexander
TU Dresden
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Making a Hedgehog Spin-Vortex State Possible:Geometric Frustration on a Square Latticecitations
- 2024Making a Hedgehog Spin-Vortex State Possiblecitations
- 2024Making a hedgehog spin-vortex state possible : geometric frustration on a square latticecitations
- 2023Synthesis, crystal and electronic structure of the Zintl phase Ba<sub>16</sub>Sb<sub>11</sub>. A case study uncovering greater structural complexity via monoclinic distortion of the tetragonal Ca<sub>16</sub>Sb<sub>11</sub> structure type.citations
- 2023Enhanced stability and complex phase behaviour of organic-inorganic green-emitting ionic manganese halidescitations
- 2022Flux Growth, Crystal Structures, and Electronic Properties of the Ternary Intermetallic Compounds Ca3Pd4Bi8 and Ca3Pt4Bi8citations
- 2021Structural Origin of Reversible Li Insertion in Guest‐Free, Type‐II Silicon Clathratescitations
- 2021Overlooked Binary Compounds Uncovered in the Reinspection of the La–Au Systemcitations
- 2020Metallic alloys at the edge of complexitycitations
- 2018Crystal structure of the layered arsenide Rb3Cu3As2citations
Places of action
Organizations | Location | People |
---|
article
Synthesis, crystal and electronic structure of the Zintl phase Ba<sub>16</sub>Sb<sub>11</sub>. A case study uncovering greater structural complexity via monoclinic distortion of the tetragonal Ca<sub>16</sub>Sb<sub>11</sub> structure type.
Abstract
<jats:title>Abstract</jats:title><jats:p>The binary Zintl phase Ba<jats:sub>16</jats:sub>Sb<jats:sub>11</jats:sub> has been synthesized and structurally characterized. Detailed studies via single‐crystal X‐ray diffraction methods indicate that although Ba<jats:sub>16</jats:sub>Sb<jats:sub>11</jats:sub> appears to crystallize in the tetragonal Ca<jats:sub>16</jats:sub>Sb<jats:sub>11</jats:sub> structure type (space group <jats:italic>P</jats:italic><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/zaac202300148-math-0001.png" xlink:title="urn:x-wiley:00442313:media:zaac202300148:zaac202300148-math-0001" /> 2<jats:sub>1</jats:sub><jats:italic>m with a</jats:italic>=13.5647(9) Å, <jats:italic>c</jats:italic>=12.4124(12) Å, <jats:italic>Z</jats:italic>=2, <jats:italic>R</jats:italic><jats:sub>1</jats:sub>=3.14 %; <jats:italic>wR</jats:italic><jats:sub>2</jats:sub>=4.77 %), there exists an extensive structural disorder. Some Ba<jats:sub>16</jats:sub>Sb<jats:sub>11</jats:sub> crystals were found to be monoclinic and the structure was solved and refined in space group <jats:italic>P</jats:italic>2<jats:sub>1</jats:sub> (<jats:italic>a</jats:italic>=18.3929(12) Å, <jats:italic>b</jats:italic>=13.5233(8) Å, <jats:italic>c</jats:italic>=18.3978(12) Å, <jats:italic>β</jats:italic>=94.6600(10)°; <jats:italic>Z</jats:italic>=4, <jats:italic>R</jats:italic><jats:sub>1</jats:sub>=5.84 %; <jats:italic>wR</jats:italic><jats:sub>2</jats:sub>=9.58 %). The latter corresponds to a 2‐fold superstructure of the tetragonal one, which provides a disorder‐free structural model. In both descriptions, the disordered tetragonal and the ordered monoclinic superstructure, the basic building units that make up the structure of this Ba‐rich compound are pairs of face‐shared square antiprisms of Ba atoms, which are centered by Sb atoms. The dimerized antiprisms are linked into parallel chains via square prisms of Ba atoms, which are also centered by Sb atoms. The Zintl concept can be applied in a straightforward manner and as result, the structure of Ba<jats:sub>32</jats:sub>Sb<jats:sub>22</jats:sub> (=2×Ba<jats:sub>16</jats:sub>Sb<jats:sub>11</jats:sub>) can be rationalized as (Ba<jats:sup>2+</jats:sup>)<jats:sub>32</jats:sub>(Sb<jats:sup>3−</jats:sup>)<jats:sub>20</jats:sub>[Sb<jats:sub>2</jats:sub>]<jats:sup>4−</jats:sup>. The partitioning of the valence electrons is done taking into an account the homoatomic Sb−Sb contacts (<jats:italic>d</jats:italic>=3.01 Å), which can be clearly distinguished in the lower symmetry space group. Electronic structure calculations of Ba<jats:sub>16</jats:sub>Sb<jats:sub>11</jats:sub> are in good accordance with the Zintl rationalization and predict a semiconductor with a band gap of 0.77 eV.</jats:p>