Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Srivastava, Divya

  • Google
  • 5
  • 9
  • 40

Aalto University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2024Massive reduction in lattice thermal conductivity and strongly enhanced thermoelectric properties in Ge- and Se-doped CoSbS1citations
  • 2023Tunable Low-Temperature Thermoelectric Transport Properties in Layered CuCr(S1-xSex)2 System4citations
  • 2023Tunable Low‐Temperature Thermoelectric Transport Properties in Layered CuCr(S<sub>1‐x</sub>Se<sub>x</sub>)<sub>2</sub> System4citations
  • 2022p-type to n-type conductivity transition in thermoelectric CoSbS8citations
  • 2019Fermi surface topology and large magnetoresistance in the topological semimetal candidate PrBi23citations

Places of action

Chart of shared publication
Karttunen, Antti J.
2 / 40 shared
Karppinen, Maarit
4 / 60 shared
Tewari, Girish C.
4 / 12 shared
Kousar, H. Sajida
2 / 3 shared
Kousar, Hafiza Sajida
2 / 2 shared
Gopal, R. K.
1 / 2 shared
Singh, Yogesh
1 / 3 shared
Karppinen, M.
1 / 10 shared
Vashist, Amit
1 / 1 shared
Chart of publication period
2024
2023
2022
2019

Co-Authors (by relevance)

  • Karttunen, Antti J.
  • Karppinen, Maarit
  • Tewari, Girish C.
  • Kousar, H. Sajida
  • Kousar, Hafiza Sajida
  • Gopal, R. K.
  • Singh, Yogesh
  • Karppinen, M.
  • Vashist, Amit
OrganizationsLocationPeople

article

Tunable Low‐Temperature Thermoelectric Transport Properties in Layered CuCr(S<sub>1‐x</sub>Se<sub>x</sub>)<sub>2</sub> System

  • Srivastava, Divya
  • Kousar, Hafiza Sajida
  • Karppinen, Maarit
  • Tewari, Girish C.
Abstract

<jats:title>Abstract</jats:title><jats:p>We have characterized the layered CuCr(S,Se)<jats:sub>2</jats:sub> system for the spin‐polarized electronic band structures and low‐temperature thermoelectric transport properties. The electronic band structure calculations reveal semiconducting behavior for CuCrS<jats:sub>2</jats:sub>, CuCr(S<jats:sub>0.5</jats:sub>Se<jats:sub>0.5</jats:sub>)<jats:sub>2</jats:sub> and CuCrSe<jats:sub>2</jats:sub> with an indirect bandgap of 0.42, 0.30 and 0.10 eV, respectively. The systematically decreased bandgap with increasing Se content is in line with the experimental observations showing a semiconductor‐to‐metal transition with increasing Se‐substitution level in the CuCr(S<jats:sub>1‐x</jats:sub>Se<jats:sub>x</jats:sub>)<jats:sub>2</jats:sub> system because of an increase in the charge carrier density. The <jats:italic>p</jats:italic>‐type Seebeck coefficient shows a linear temperature dependence for the samples, like in degenerate semiconductors or metals. The remarkably large Seebeck coefficient even in metallic samples is due to a relatively large effective mass of charge carriers. As the thermal conductivity is intrinsically low owing to the layered crystal structure and is further decreased for the Se‐substituted samples because of the increased phonon scattering from point defects, the thermoelectric characteristics are promising. The highest dimensionless figure‐of‐merit values were seen for the x=0.5 sample, e. g., 0.04 at 400 K.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • semiconductor
  • layered
  • thermal conductivity
  • band structure
  • point defect