Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tsujii, Naohito

  • Google
  • 3
  • 26
  • 27

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Rhombohedral Boron Monosulfide as a p-Type Semiconductor9citations
  • 2022Thermoelectric properties of Cu‐Doped Heusler compound Fe<sub>2‐<i>x</i></sub>Cu<sub><i>x</i></sub>VAl3citations
  • 2017Pressure-induced anomalous valence crossover in cubic YbCu5-based compounds15citations

Places of action

Chart of shared publication
Miyazaki, Keisuke
1 / 1 shared
Taniguchi, Takashi
1 / 58 shared
Watanabe, Norinobu
1 / 1 shared
Mori, Takao
2 / 39 shared
Yamamoto, Akiyasu
1 / 3 shared
Saito, Susumu
1 / 1 shared
Miyakawa, Masashi
1 / 1 shared
Kusaka, Haruki
1 / 1 shared
Aizawa, Takashi
1 / 2 shared
Bourgès, Cédric
1 / 8 shared
Bauer, Ernst
2 / 9 shared
Gao, Weihong
1 / 3 shared
Mito, Takeshi
1 / 1 shared
Tsuei, Ku Ding
1 / 1 shared
Yamaoka, Hitoshi
1 / 2 shared
Hiraoka, Nozomu
1 / 5 shared
Sakurai, Hiroya
1 / 4 shared
Ishii, Hirofumi
1 / 4 shared
Mizuki, Junichiro
1 / 1 shared
Yamamoto, Yoshiya
1 / 1 shared
Sato, Hitoshi
1 / 1 shared
Lin, Jung Fu
1 / 1 shared
Giovannini, Mauro
1 / 6 shared
Jarrige, Ignace
1 / 1 shared
Suzuki, Michi To
1 / 1 shared
Sakai, Osamu
1 / 1 shared
Chart of publication period
2023
2022
2017

Co-Authors (by relevance)

  • Miyazaki, Keisuke
  • Taniguchi, Takashi
  • Watanabe, Norinobu
  • Mori, Takao
  • Yamamoto, Akiyasu
  • Saito, Susumu
  • Miyakawa, Masashi
  • Kusaka, Haruki
  • Aizawa, Takashi
  • Bourgès, Cédric
  • Bauer, Ernst
  • Gao, Weihong
  • Mito, Takeshi
  • Tsuei, Ku Ding
  • Yamaoka, Hitoshi
  • Hiraoka, Nozomu
  • Sakurai, Hiroya
  • Ishii, Hirofumi
  • Mizuki, Junichiro
  • Yamamoto, Yoshiya
  • Sato, Hitoshi
  • Lin, Jung Fu
  • Giovannini, Mauro
  • Jarrige, Ignace
  • Suzuki, Michi To
  • Sakai, Osamu
OrganizationsLocationPeople

article

Thermoelectric properties of Cu‐Doped Heusler compound Fe<sub>2‐<i>x</i></sub>Cu<sub><i>x</i></sub>VAl

  • Mori, Takao
  • Bourgès, Cédric
  • Tsujii, Naohito
  • Bauer, Ernst
  • Gao, Weihong
Abstract

<jats:title>Abstract</jats:title><jats:p>We investigated the effects on thermoelectric properties of Cu doping in Fe<jats:sub>2‐<jats:italic>x</jats:italic></jats:sub>Cu<jats:sub><jats:italic>x</jats:italic></jats:sub>VAl at Fe site of full‐Heusler type compound. It is found that the Cu doping for Fe sites causes a significant increase in the absolute value of Seebeck coefficient |<jats:italic>S|</jats:italic> and a decrease in thermal conductivity. The Seebeck coefficient (<jats:italic>S</jats:italic>)=‐148μV/K and the Power factor (<jats:italic>PF</jats:italic>)=4.0 mWK<jats:sup>−2</jats:sup>m<jats:sup>−1</jats:sup> have been observed for Fe<jats:sub>1.9</jats:sub>Cu<jats:sub>0.1</jats:sub>VAl (<jats:italic>x</jats:italic>=0.1) at 300 K. To further improve it, we fixed the Cu doping level at x=0.1 in Fe<jats:sub>2‐<jats:italic>x</jats:italic></jats:sub>Cu<jats:sub><jats:italic>x</jats:italic></jats:sub>VAl and co‐doped the material with Si at Al site, namely, Fe<jats:sub>1.9</jats:sub>Cu<jats:sub>0.1</jats:sub>VAl<jats:sub>1‐<jats:italic>y</jats:italic></jats:sub>Si<jats:sub><jats:italic>y</jats:italic>.</jats:sub> The thermoelectric properties have been improved by Si doping to a certain limit. We observed a decrease in electrical resistivity and lattice thermal conductivity by Si doping for Al. The maximum power factor of 4.5 mWK<jats:sup>−2</jats:sup>m<jats:sup>−1</jats:sup> has been achieved for Fe<jats:sub>1.9</jats:sub>Cu<jats:sub>0.1</jats:sub>Al<jats:sub>0.9</jats:sub>Si<jats:sub>0.1</jats:sub> at 350 K. More precisely, the thermoelectric performance has been improved with co‐doping of Cu for Fe sites and Si for Al sites. The largest <jats:italic>ZT</jats:italic> value is 0.13 for Fe<jats:sub>1.9</jats:sub>Cu<jats:sub>0.1</jats:sub>VAl<jats:sub>1‐<jats:italic>y</jats:italic></jats:sub>Si<jats:sub><jats:italic>y</jats:italic></jats:sub> (<jats:italic>y</jats:italic>=0.15). Magnetic susceptibility suggests that all the measured compounds are showing paramagnetic behavior. The magnetic character is the most pronounced in Fe<jats:sub>1.9</jats:sub>Cu<jats:sub>0.1</jats:sub>VAl among the materials investigated, pointing to a possible correlation between the magnetic character due to electronic correlation and the larger Seebeck coefficient in this sample.</jats:p>

Topics
  • impedance spectroscopy
  • compound
  • resistivity
  • susceptibility
  • thermal conductivity