People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mori, Takao
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (39/39 displayed)
- 2024Thermoelectric performance of n-type Bi2S3-alloyed Bi2Te2.7Se0.3
- 2024Outstanding Room‐Temperature Thermoelectric Performance of n‐type Mg<sub>3</sub>Bi<sub>2</sub>‐Based Compounds Through Synergistically Combined Band Engineering Approachescitations
- 2024Enhanced thermoelectric performance of p-type BiSbTe through incorporation of magnetic CrSbcitations
- 2024Record‐High Thermoelectric Performance in Al‐Doped ZnO via Anderson Localization of Band Edge Statescitations
- 2024PbSe Quantum Dot Superlattice Thin Films for Thermoelectric Applicationscitations
- 2024PbSe Quantum Dot Superlattice Thin Films for Thermoelectric Applicationscitations
- 2024Influence of Ge to the formation of defects in epitaxial Mg<sub>2</sub>Sn<sub>1−x </sub>Ge<sub> x </sub> thermoelectric thin filmscitations
- 2023Room-Temperature Thermoelectric Performance of n‑Type Multiphase Pseudobinary Bi 2 Te 3 –Bi 2 S 3 Compounds: Synergic Effects of Phonon Scattering and Energy Filteringcitations
- 2023Investigation of Mn Single and Co-Doping in Thermoelectric CoSb 3 -Skutterudite: A Way Toward a Beneficial Composite Effectcitations
- 2023Effect of the annealing treatment on structural and transport properties of thermoelectric Smy(FexNi1-x)4Sb12thin filmscitations
- 2023Enhanced High-Temperature Thermoelectric Performance of Yb 4 Sb 3 via Ce/Bi Co-doping and Metallic Contact Deposition for Device Integrationcitations
- 2023Rhombohedral Boron Monosulfide as a p-Type Semiconductorcitations
- 2023Surface chemical states and structures of epitaxial Mg<sub>2</sub>Sn thermoelectric thin filmscitations
- 2022Feasibility of high performance in <i>p</i>‐type Ge<sub>1−</sub><i><sub>x</sub></i>Bi<i><sub>x</sub></i>Te materials for thermoelectric modulescitations
- 2022A hierarchical design for thermoelectric hybrid materials: Bi2Te3 particles covered by partial Au skins enhance thermoelectric performance in sticky thermoelectric materialscitations
- 2022Thermoelectric properties of Cu‐Doped Heusler compound Fe<sub>2‐<i>x</i></sub>Cu<sub><i>x</i></sub>VAlcitations
- 2022Heterometallic Benzenehexathiolato Coordination Nanosheets: Periodic Structure Improves Crystallinity and Electrical Conductivitycitations
- 2022New record high thermoelectric ZT of delafossite-based CuCrO<SUB>2</SUB> thin films obtained by simultaneously reducing electrical resistivity and thermal conductivity via heavy doping with controlled residual stresscitations
- 2022Heterometallic Benzenehexathiolato Coordination Nanosheets: Periodic Structure Improves Crystallinity and Electrical Conductivity.
- 2022Facile Fabrication of N-Type Flexible CoSb3-xTex Skutterudite/PEDOT:PSS Hybrid Thermoelectric Filmscitations
- 2022Improvement of Thermoelectric Properties via Texturation Using a Magnetic Slip Casting Process-The Illustrative Case of CrSi2citations
- 2021Transport properties of a molybdenum antimonide-telluride with dispersed NiSb nanoparticlescitations
- 2021Robust, Transparent Hybrid Thin Films of Phase-Change Material Sb2S3 Prepared by Electrophoretic Depositioncitations
- 2021Robust, Transparent Hybrid Thin Films of Phase-Change Material Sb 2 S 3 Prepared by Electrophoretic Depositioncitations
- 2021Fabrication and Evaluation of Low-Cost CrSi2 Thermoelectric Legscitations
- 2021Fabrication and Evaluation of Low-Cost CrSi2 Thermoelectric Legscitations
- 2021Synthesis of novel hexamolybdenum cluster-functionalized copper hydroxide nanocomposites and its catalytic activity for organic molecule degradationcitations
- 2020Improvement in the thermoelectric properties of porous networked Al-doped ZnO nanostructured materials synthesized via an alternative interfacial reaction and low-pressure SPS processingcitations
- 2020Influence of Stoichiometry and Aging at Operating Temperature on Thermoelectric Higher Manganese Silicidescitations
- 2020New Synthesis Route for Complex Borides; Rapid Synthesis of Thermoelectric Yttrium Aluminoboride via Liquid-Phase Assisted Reactive Spark Plasma Sinteringcitations
- 2020Screening of transition (Y, Zr, Hf, V, Nb, Mo, and Ru) and rare-earth (La and Pr) elements as potential effective dopants for thermoelectric GeTe – an experimental and theoretical appraisalcitations
- 2019Development of nanoscale thermocouple probes for local thermal measurementscitations
- 2018Visualizing nanoscale heat pathwayscitations
- 2018Enhanced thermoelectric performance of Bi-Sb-Te/Sb2O3 nanocomposites by energy filtering effectcitations
- 2017Sb Doping of Metallic CuCr2S4 as a Route to Highly Improved Thermoelectric Propertiescitations
- 2017Nano-micro-porous skutterudites with 100% enhancement in ZT for high performance thermoelectricitycitations
- 2017Thermoelectric properties of boron carbide/HfB2 compositescitations
- 2015Nanoscale characterization of the thermal interface resistance of a heat-sink composite material by in situ TEMcitations
- 2003Direct pyrolysis method for superconducting crystalline MgB2 nanowirescitations
Places of action
Organizations | Location | People |
---|
article
Thermoelectric properties of Cu‐Doped Heusler compound Fe<sub>2‐<i>x</i></sub>Cu<sub><i>x</i></sub>VAl
Abstract
<jats:title>Abstract</jats:title><jats:p>We investigated the effects on thermoelectric properties of Cu doping in Fe<jats:sub>2‐<jats:italic>x</jats:italic></jats:sub>Cu<jats:sub><jats:italic>x</jats:italic></jats:sub>VAl at Fe site of full‐Heusler type compound. It is found that the Cu doping for Fe sites causes a significant increase in the absolute value of Seebeck coefficient |<jats:italic>S|</jats:italic> and a decrease in thermal conductivity. The Seebeck coefficient (<jats:italic>S</jats:italic>)=‐148μV/K and the Power factor (<jats:italic>PF</jats:italic>)=4.0 mWK<jats:sup>−2</jats:sup>m<jats:sup>−1</jats:sup> have been observed for Fe<jats:sub>1.9</jats:sub>Cu<jats:sub>0.1</jats:sub>VAl (<jats:italic>x</jats:italic>=0.1) at 300 K. To further improve it, we fixed the Cu doping level at x=0.1 in Fe<jats:sub>2‐<jats:italic>x</jats:italic></jats:sub>Cu<jats:sub><jats:italic>x</jats:italic></jats:sub>VAl and co‐doped the material with Si at Al site, namely, Fe<jats:sub>1.9</jats:sub>Cu<jats:sub>0.1</jats:sub>VAl<jats:sub>1‐<jats:italic>y</jats:italic></jats:sub>Si<jats:sub><jats:italic>y</jats:italic>.</jats:sub> The thermoelectric properties have been improved by Si doping to a certain limit. We observed a decrease in electrical resistivity and lattice thermal conductivity by Si doping for Al. The maximum power factor of 4.5 mWK<jats:sup>−2</jats:sup>m<jats:sup>−1</jats:sup> has been achieved for Fe<jats:sub>1.9</jats:sub>Cu<jats:sub>0.1</jats:sub>Al<jats:sub>0.9</jats:sub>Si<jats:sub>0.1</jats:sub> at 350 K. More precisely, the thermoelectric performance has been improved with co‐doping of Cu for Fe sites and Si for Al sites. The largest <jats:italic>ZT</jats:italic> value is 0.13 for Fe<jats:sub>1.9</jats:sub>Cu<jats:sub>0.1</jats:sub>VAl<jats:sub>1‐<jats:italic>y</jats:italic></jats:sub>Si<jats:sub><jats:italic>y</jats:italic></jats:sub> (<jats:italic>y</jats:italic>=0.15). Magnetic susceptibility suggests that all the measured compounds are showing paramagnetic behavior. The magnetic character is the most pronounced in Fe<jats:sub>1.9</jats:sub>Cu<jats:sub>0.1</jats:sub>VAl among the materials investigated, pointing to a possible correlation between the magnetic character due to electronic correlation and the larger Seebeck coefficient in this sample.</jats:p>