Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Scherer, Wolfgang

  • Google
  • 6
  • 44
  • 72

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2021Transport Properties of Ag‐doped ZnSb8citations
  • 2018Synthesis, Characterisation and Reactions of Truly Cationic Ni(I)–Phosphine Complexes21citations
  • 2014Charge Density and Chemical Bonding in Inorganic Materialscitations
  • 2012Thermoelectric properties of Zn5Sb4In2-δ (δ = 0.15)5citations
  • 2010Synthesis, structure, and electronic properties of 4H-germanium38citations
  • 2009Nature of the bonding in metal-silane σ-complexescitations

Places of action

Chart of shared publication
Häussermann, Ulrich
1 / 11 shared
Eklöf, Daniel
1 / 1 shared
Grins, Jekabs
1 / 9 shared
Fischer, Andreas
1 / 16 shared
Schmitz, Dominik
1 / 1 shared
Yassine, Zeinab
1 / 1 shared
Krossing, Ingo
1 / 12 shared
Peter, Andreas
1 / 1 shared
Breher, Frank
1 / 2 shared
Higelin, Alexander
1 / 1 shared
Kacprzak, Sylwia
1 / 1 shared
Himmel, Daniel
1 / 1 shared
Schwab, Miriam Mareen
1 / 1 shared
Weber, Stefan
1 / 7 shared
Wernet, Melanie
1 / 1 shared
Feuerstein, Wolfram
1 / 1 shared
Weis, Philippe
1 / 1 shared
Scheidt, Ernstwilhelm
1 / 1 shared
Kratzert, Daniel
1 / 1 shared
Radtke, Valentin
1 / 1 shared
Toberer, E. S.
1 / 1 shared
Fischer, A.
1 / 36 shared
Snyder, G. J.
1 / 3 shared
Häussermann, U.
1 / 1 shared
Wu, Y.
1 / 43 shared
Scheidt, E.-W.
1 / 1 shared
Newman, N.
1 / 15 shared
Litvinchuk, A. P.
1 / 2 shared
Haeussermann, Ulrich
1 / 2 shared
Karttunen, Antti J.
1 / 40 shared
Hlukhyy, Viktor
1 / 8 shared
Faessler, Thomas F.
1 / 4 shared
Kiefer, Florian
1 / 2 shared
Gold, Christian
1 / 1 shared
Scheidt, Ernst-Wilhelm
1 / 2 shared
Nylen, Johanna
1 / 1 shared
Chatterton, Nicholas P.
1 / 1 shared
Altmannshofer, Sandra
1 / 1 shared
Herz, Verena
1 / 1 shared
Ostermann, Andreas
1 / 1 shared
Eickerling, Georg
1 / 1 shared
Mcgrady, G. Sean
1 / 1 shared
Sirsch, Peter
1 / 2 shared
Gatti, Carlo
1 / 9 shared
Chart of publication period
2021
2018
2014
2012
2010
2009

Co-Authors (by relevance)

  • Häussermann, Ulrich
  • Eklöf, Daniel
  • Grins, Jekabs
  • Fischer, Andreas
  • Schmitz, Dominik
  • Yassine, Zeinab
  • Krossing, Ingo
  • Peter, Andreas
  • Breher, Frank
  • Higelin, Alexander
  • Kacprzak, Sylwia
  • Himmel, Daniel
  • Schwab, Miriam Mareen
  • Weber, Stefan
  • Wernet, Melanie
  • Feuerstein, Wolfram
  • Weis, Philippe
  • Scheidt, Ernstwilhelm
  • Kratzert, Daniel
  • Radtke, Valentin
  • Toberer, E. S.
  • Fischer, A.
  • Snyder, G. J.
  • Häussermann, U.
  • Wu, Y.
  • Scheidt, E.-W.
  • Newman, N.
  • Litvinchuk, A. P.
  • Haeussermann, Ulrich
  • Karttunen, Antti J.
  • Hlukhyy, Viktor
  • Faessler, Thomas F.
  • Kiefer, Florian
  • Gold, Christian
  • Scheidt, Ernst-Wilhelm
  • Nylen, Johanna
  • Chatterton, Nicholas P.
  • Altmannshofer, Sandra
  • Herz, Verena
  • Ostermann, Andreas
  • Eickerling, Georg
  • Mcgrady, G. Sean
  • Sirsch, Peter
  • Gatti, Carlo
OrganizationsLocationPeople

article

Transport Properties of Ag‐doped ZnSb

  • Häussermann, Ulrich
  • Scherer, Wolfgang
  • Eklöf, Daniel
  • Grins, Jekabs
  • Fischer, Andreas
Abstract

<jats:p>The intermetallic compound ZnSb is a (II‐V) narrow gap semiconductor with interesting thermoelectric properties. Electrical resistivity, Hall coefficient, thermopower and thermal conductivity were measured up to 400 K on Ag‐doped samples with concentrations 0.2, 0.5, 1, 2, and 3 at.%, which were consolidated to densities in excess of 99.5 % by spark plasma sintering. The work confirms a huge improvement of the thermoelectric Figure‐of‐merit, <jats:italic>ZT</jats:italic>, upon Ag doping. The optimum doping level is near 0.5 at.% Ag and results in <jats:italic>ZT</jats:italic> values around 1.05 at 390 K. The improvement stems from a largely decreased resistivity, which in turn relates to an increase of the hole charge carrier concentration by two orders of magnitude. It is argued that Ag can replace minute concentrations of Zn (on the order of 0.2 at.%) in the crystal structure which enhances the intrinsic impurity band of ZnSb. Excess Ag was found to segregate in grain boundaries. So the best performing material may be considered as a composite Zn<jats:sub>~0.998</jats:sub>Ag<jats:sub>~0.002</jats:sub>Sb/Ag<jats:sub>~0.003</jats:sub>.</jats:p>

Topics
  • impedance spectroscopy
  • compound
  • grain
  • resistivity
  • semiconductor
  • composite
  • intermetallic
  • thermal conductivity
  • sintering