Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Anderson, Michael W.

  • Google
  • 12
  • 55
  • 542

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (12/12 displayed)

  • 2018Facile isolation of a stable S 6 -symmetric methanol hexamer using the guest-free microporous metal-organic framework:Zinc 5-tert-butyl isophthalate1citations
  • 2017Predicting crystal growth via a unified kinetic three-dimensional partition model105citations
  • 2014Structures of silica-based nanoporous materials revealed by microscopy15citations
  • 2014Silica-Based Nanoporous Materials15citations
  • 2013Materials discovery and crystal growth of zeolite A type zeolitic-imidazolate frameworks revealed by atomic force microscopy25citations
  • 2013A review of fine structures of nanoporous materials as evidenced by microscopic methods51citations
  • 2012Crystal growth mechanisms and morphological control of the prototypical metal-organic framework MOF-5 revealed by atomic force microscopy78citations
  • 2012Growth mechanism of microporous zincophosphate sodalite revealed by in situ atomic force microscopy29citations
  • 2011Revelation of the molecular assembly of the nanoporous metal organic framework ZIF-8158citations
  • 2010Assessing Molecular Transport Properties of Nanoporous Materials by Interference Microscopy39citations
  • 2008Combined MS and NMR: attractive route to future understanding of the first stages of nucleation of nanoporous materials4citations
  • 2007Crystal growth in nanoporous framework materials22citations

Places of action

Chart of shared publication
Jovial, Samaila A.
1 / 1 shared
Attfield, Martin P.
5 / 12 shared
Raftery, James
1 / 20 shared
Arstad, Bjornar
1 / 1 shared
Akporiaye, Duncan
1 / 1 shared
Proserpio, Davide M.
1 / 8 shared
Gonzales, Pablo Cubillas
1 / 1 shared
Farida, Nani
1 / 1 shared
Blatov, Vladislav A.
1 / 4 shared
Gebbie-Rayet, James T.
1 / 1 shared
Attfield, Martin
1 / 8 shared
Hill, Adam
1 / 1 shared
Gale, Julian D.
1 / 4 shared
Miyasaka, Keiichi
3 / 4 shared
Che, Shunai
2 / 4 shared
Asahina, Shunsuke
3 / 3 shared
Stevens, Sam M.
3 / 3 shared
Mayoral, Alvaro
2 / 9 shared
Yoon, Kyung Byung
2 / 3 shared
Oleynikov, Peter
2 / 3 shared
Suga, Mitsuo
3 / 3 shared
Han, Lu
3 / 3 shared
Fujita, Nobuhisa
3 / 3 shared
Kjellman, Tomas
2 / 2 shared
Alfredsson, Viveka
2 / 6 shared
Liu, Zheng
3 / 10 shared
Sakamoto, Yasuhiro
3 / 4 shared
Xiao, Changhong
3 / 4 shared
Ohsuna, Tetsu
2 / 3 shared
Terasaki, Osamu
3 / 12 shared
Díaz, Isabel
1 / 2 shared
Ma, Yanhang
2 / 2 shared
Diaz, Isabel
1 / 1 shared
Garcia-Bennett, Alfonso
1 / 1 shared
Cubillas, Pablo
5 / 8 shared
Ryoo, Ryong
1 / 2 shared
Slater, Ben
1 / 4 shared
Gebbie, James T.
1 / 1 shared
Holden, Mark A.
1 / 3 shared
Moh, Pak Y.
1 / 1 shared
Tzoulaki, Despina
1 / 2 shared
Zhou, Wuzong
1 / 29 shared
Castro, Maria
1 / 3 shared
Heinke, Lars
1 / 28 shared
Wright, Paul A.
1 / 14 shared
Kaerger, Joerg
1 / 1 shared
Wong, Stephen C. C.
1 / 1 shared
Petry, David P.
1 / 1 shared
Haouas, Mohamed
1 / 9 shared
Taulelle, Francis
1 / 5 shared
Gaskell, Simon J.
1 / 1 shared
Meza, L. Itzel
1 / 2 shared
Agger, Jonathan R.
1 / 1 shared
Cundy, Colin S.
1 / 1 shared
Chong, Chin B.
1 / 1 shared
Chart of publication period
2018
2017
2014
2013
2012
2011
2010
2008
2007

Co-Authors (by relevance)

  • Jovial, Samaila A.
  • Attfield, Martin P.
  • Raftery, James
  • Arstad, Bjornar
  • Akporiaye, Duncan
  • Proserpio, Davide M.
  • Gonzales, Pablo Cubillas
  • Farida, Nani
  • Blatov, Vladislav A.
  • Gebbie-Rayet, James T.
  • Attfield, Martin
  • Hill, Adam
  • Gale, Julian D.
  • Miyasaka, Keiichi
  • Che, Shunai
  • Asahina, Shunsuke
  • Stevens, Sam M.
  • Mayoral, Alvaro
  • Yoon, Kyung Byung
  • Oleynikov, Peter
  • Suga, Mitsuo
  • Han, Lu
  • Fujita, Nobuhisa
  • Kjellman, Tomas
  • Alfredsson, Viveka
  • Liu, Zheng
  • Sakamoto, Yasuhiro
  • Xiao, Changhong
  • Ohsuna, Tetsu
  • Terasaki, Osamu
  • Díaz, Isabel
  • Ma, Yanhang
  • Diaz, Isabel
  • Garcia-Bennett, Alfonso
  • Cubillas, Pablo
  • Ryoo, Ryong
  • Slater, Ben
  • Gebbie, James T.
  • Holden, Mark A.
  • Moh, Pak Y.
  • Tzoulaki, Despina
  • Zhou, Wuzong
  • Castro, Maria
  • Heinke, Lars
  • Wright, Paul A.
  • Kaerger, Joerg
  • Wong, Stephen C. C.
  • Petry, David P.
  • Haouas, Mohamed
  • Taulelle, Francis
  • Gaskell, Simon J.
  • Meza, L. Itzel
  • Agger, Jonathan R.
  • Cundy, Colin S.
  • Chong, Chin B.
OrganizationsLocationPeople

article

Structures of silica-based nanoporous materials revealed by microscopy

  • Miyasaka, Keiichi
  • Che, Shunai
  • Asahina, Shunsuke
  • Stevens, Sam M.
  • Mayoral, Alvaro
  • Yoon, Kyung Byung
  • Oleynikov, Peter
  • Anderson, Michael W.
  • Suga, Mitsuo
  • Han, Lu
  • Fujita, Nobuhisa
  • Kjellman, Tomas
  • Alfredsson, Viveka
  • Liu, Zheng
  • Sakamoto, Yasuhiro
  • Xiao, Changhong
  • Ohsuna, Tetsu
  • Terasaki, Osamu
  • Díaz, Isabel
  • Ma, Yanhang
Abstract

<p>Ordered nanoporous structures are among the most fascinating and industrially important materials currently in use. The archetypal zeolite material has now been joined by an eclectic array of new structures that exhibit porosity over a wide range of length scales and with order/disorder expressed in a multitude of ways. This raises the bar in terms of characterization and extends a real challenge to the scientific community to fully understand the properties and potential future applications of such materials. In this review we discuss the importance of modern microscopy tools combined with diffraction in this endeavour and show how the details of even the most complex quasi-crystalline nanoporous architectures can be elucidated. We show by using the appropriate spherical aberration (Cs) corrections in scanning transmission electron microscopy it is possible to decipher all the individual silicon and aluminum atoms in a zeolite structure. Automated routines for using large electron diffraction datasets for crystal structure determination of nanocrystals is described making the need for large single crystal synthesis less-and-less important. The power of complementary combinations of surface tools such as atomic force microscopy and high-resolution scanning electron microscopy is discussed to elucidate crystal growth mechanisms. For mesoporous materials synthesized from self-organized organic mesophases electron microscopy reveals the details of the complex hierarchy of porosity so crucial for the functional performance of the structure.</p>

Topics
  • impedance spectroscopy
  • surface
  • single crystal
  • scanning electron microscopy
  • electron diffraction
  • atomic force microscopy
  • aluminium
  • laser emission spectroscopy
  • transmission electron microscopy
  • Silicon
  • porosity