Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Azarpeyvand, Mahdi

  • Google
  • 4
  • 3
  • 92

University of Bristol

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2018Design and mechanical testing of a variable stiffness morphing trailing edge flap21citations
  • 2016Design optimization of a morphing flap device using variable stiffness materials6citations
  • 2016Aerodynamic and aeroacoustic performance of airfoils with morphing structures65citations
  • 2014Airfoil noise reduction using morphing trailing edgecitations

Places of action

Chart of shared publication
Weaver, Pm
4 / 560 shared
Ai, Qing
4 / 6 shared
Lachenal, Xavier
2 / 15 shared
Chart of publication period
2018
2016
2014

Co-Authors (by relevance)

  • Weaver, Pm
  • Ai, Qing
  • Lachenal, Xavier
OrganizationsLocationPeople

article

Aerodynamic and aeroacoustic performance of airfoils with morphing structures

  • Weaver, Pm
  • Lachenal, Xavier
  • Ai, Qing
  • Azarpeyvand, Mahdi
Abstract

<p>Aerodynamic and aeroacoustic performance of airfoils fitted with morphing trailing edges are investigated using a coupled structure/fluid/noise model. The control of the flow over the surface of an airfoil using shape optimization techniques can significantly improve the load distribution along the chord and span lengths whilst minimising noise generation. In this study, a NACA 63-418 airfoil is fitted with a morphing flap and various morphing profiles are considered with two features that distinguish them from conventional flaps: they are conformal and do not rely on conventional internal mechanisms. A novel design of a morphing flap using a zero Poisson's ratio honeycomb core with tailored bending stiffness is developed and investigated using the finite element model. Whilst tailoring the bending stiffness along the chord of the flap yields large flap deflections, it also enables profile tailoring of the deformed structure which is shown to significantly affect airfoil noise generation. The aeroacoustic behaviour of the airfoil is studied using a semi-empirical airfoil noise prediction model. Results show that the morphing flap can effectively reduce the airfoil trailing edge noise over a wide range of flow speeds and angles of attack. It is also shown that appropriate morphing profile tailoring improves the effect of morphing trailing edge on the aerodynamic and aeroacoustic performance of the airfoil.</p>

Topics
  • impedance spectroscopy
  • surface
  • Poisson's ratio