People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Saeb, Mohammad Reza
Gdańsk Medical University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (33/33 displayed)
- 2024Tailoring van der Waals interactions in ultra-thin two dimensional metal–organic frameworks (MOFs) for photoconductive applications
- 2024Fluorinated‐polyhedral oligomeric silsesquioxane (F‐POSS) functionalized halloysite nanotubes (HNTs) as an antifouling additive for epoxy resincitations
- 2024Hydrogel and aerogel‐based flame‐retardant polymeric materials: A reviewcitations
- 2023Polysaccharide-based C-dots and Polysacchride/C-dot Nanocomposites: Fabrications and Applicationscitations
- 2023New Transparent Flame-Retardant (FR) Coatings Based on Epoxy-Aluminum Hypophosphite Nanocompositescitations
- 2023New Transparent Flame-Retardant (FR) Coatings Based on Epoxy-Aluminum Hypophosphite Nanocomposites ; Nouveaux revêtements transparents ignifugés (FR) à base de nanocomposites époxy-aluminium hypophosphitecitations
- 2023Toward Olefin Multiblock Copolymers with Tailored Properties: A Molecular Perspectivecitations
- 2022Cure kinetics of samarium-doped Fe3O4/epoxy nanocompositescitations
- 2022GTR/Thermoplastics Blends: How Do Interfacial Interactions Govern Processing and Physico-Mechanical Properties?citations
- 2022Application of g-C 3 N 4 /ZnO nanocomposites for fabrication of anti-fouling polymer membranes with dye and protein rejection superiority
- 2021Amine‐functionalized metal–organic frameworks/epoxy nanocomposites: Structure‐properties relationshipscitations
- 2021Green carbon-based nanocomposite biomaterials through the lens of microscopescitations
- 2021Electrospinning for developing flame retardant polymer materials: current status and future perspectivescitations
- 2021Corrigendum to “Nonisothermal cure kinetics of epoxy/MnxFe3-xO4 nanocomposites” [Prog. Org. Coat. 140C (2020) 105505]
- 2021Polymer nanocomposites from the flame retardancy viewpoint: A comprehensive classification of nanoparticle performance using the flame retardancy indexcitations
- 2021Correlating the Photophysical Properties with the Cure Index of Epoxy Nanocomposite Coatingscitations
- 2021Toward Olefin Multiblock Copolymers with Tailored Properties: A Molecular Perspectivecitations
- 2020Halloysite nanotubes (HNTs)/polymer nanocomposites: thermal degradation and flame retardancycitations
- 2020Nanocomposite biomaterials made by 3D printingcitations
- 2020Calcium carbonate and ammonium polyphosphate flame retardant additives formulated to protect ethylene vinyl acetate copolymer against fire: Hydrated or carbonated calcium?citations
- 2019Biodegradable polyester thin films and coatings in the line of fire: the time of polyhydroxyalkanoate (PHA)?citations
- 2019The Taste of Waste: The Edge of Eggshell Over Calcium Carbonate in Acrylonitrile Butadiene Rubber
- 2019Intelligent Machine Learning: Tailor-Making Macromoleculescitations
- 2019Thermal Stability and Flammability Behavior of Poly(3-hydroxybutyrate) (PHB) Based Compositescitations
- 2019Surface chemistry of halloysite nanotubes controls the curability of low filled epoxy nanocompositescitations
- 2018Intelligent Monte Carlo: A New Paradigm for Inverse Polymerization Engineeringcitations
- 2018Flame retardant epoxy/halloysite nanotubes nanocomposite coatings: Exploring low-concentration threshold for flammability compared to expandable graphite as superior fire retardantcitations
- 2018An attempt to mechanistically explain the viscoelastic behavior of transparent epoxy/starch-modified ZnO nanocomposite coatingscitations
- 2018Acid-aided epoxy-amine curing reaction as reflected in epoxy/Fe3O4 nanocomposites: Chemistry, mechanism, and fracture behaviorcitations
- 2018Hyperbranched poly(ethyleneimine) physically attached to silica nanoparticles to facilitate curing of epoxy nanocomposite coatingscitations
- 2017High-performance hybrid coatings based on diamond-like carbon and copper for carbon steel protectioncitations
- 2017Transparent nanocomposite coatings based on epoxy and layered double hydroxide: Nonisothermal cure kinetics and viscoelastic behavior assessmentscitations
- 2017Novel nanocomposites based on poly(ethylene- co -vinyl acetate) for coating applications: The complementary actions of hydroxyapatite, MWCNTs and ammonium polyphosphate on flame retardancycitations
Places of action
Organizations | Location | People |
---|
article
Calcium carbonate and ammonium polyphosphate flame retardant additives formulated to protect ethylene vinyl acetate copolymer against fire: Hydrated or carbonated calcium?
Abstract
International audience ; In this study, the effect of the chemical nature of different calcium (Ca)‐based minerals as flame retardant additives in combination with ammonium polyphosphate (APP), in 1:1 proportions, on the flame retardancy behavior and performance of ethylene vinyl acetate copolymer was discussed. Combining APP with partly and completely hydrated calcium oxide led to superior flame‐retardant function detected in mass loss calorimeter measurements with respect to the corresponding system containing carbonated calcium. This privileged character was attributed to the higher reactivity of hydrated Ca‐based fillers toward APP in comparison with Ca carbonate, which induced the formation of an intumescent residue. The difference between reactivity potential of hydrated and dry Ca was demonstrated by the newly formed thermally stable species, and further evidenced by thermogravimetric analysis performed on APP/fillers blends. Moreover, the presence of more crystalline domains in the Ca/phosphorus‐based compounds was evidenced by XRD analysis of the mass loss calorimeter test residues. The results of this work highlight the role of blend additive systems on the performance of flame retardancy of polymer materials.