Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hannula, M.

  • Google
  • 4
  • 23
  • 35

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2023Chemical interactions in composites of gellan gum and bioactive glass: self-crosslinking and in vitro dissolution3citations
  • 2021Highly efficient charge separation in model Z-scheme TiO2/TiSi2/Si photoanode by micropatterned titanium silicide interlayer14citations
  • 2019Gas-foamed poly(lactide-co-glycolide) and poly(lactide-co-glycolide) with bioactive glass fibres demonstrate insufficient bone repair in lapine osteochondral defects15citations
  • 2016X-ray microtomography of collagen and polylactide samples in liquids3citations

Places of action

Chart of shared publication
Salminen, Turkka
1 / 31 shared
Koivisto, Janne T.
1 / 4 shared
Yiannacou, Anastasiia
1 / 1 shared
Kellomäki, Minna
3 / 31 shared
Massera, J.
1 / 27 shared
Tukiainen, A.
1 / 1 shared
Saari, J.
1 / 4 shared
Ali-Löytty, H.
1 / 1 shared
Lahtonen, K.
1 / 7 shared
Valden, M.
1 / 5 shared
Muhonen, V.
1 / 2 shared
Uppstu, P.
1 / 2 shared
Aula, Antti
2 / 3 shared
Haaparanta, Am
1 / 1 shared
Kiviranta, I.
1 / 3 shared
Rosling, Ari
1 / 3 shared
Pyhältö, T.
1 / 1 shared
Järvinen, E.
1 / 1 shared
Salonius, Eve
1 / 1 shared
Lehto, K.
1 / 1 shared
Tamminen, I.
1 / 1 shared
Hyttinen, Jari Aarne Kalevi
1 / 11 shared
Haaparanta, Anne-Marie
1 / 2 shared
Chart of publication period
2023
2021
2019
2016

Co-Authors (by relevance)

  • Salminen, Turkka
  • Koivisto, Janne T.
  • Yiannacou, Anastasiia
  • Kellomäki, Minna
  • Massera, J.
  • Tukiainen, A.
  • Saari, J.
  • Ali-Löytty, H.
  • Lahtonen, K.
  • Valden, M.
  • Muhonen, V.
  • Uppstu, P.
  • Aula, Antti
  • Haaparanta, Am
  • Kiviranta, I.
  • Rosling, Ari
  • Pyhältö, T.
  • Järvinen, E.
  • Salonius, Eve
  • Lehto, K.
  • Tamminen, I.
  • Hyttinen, Jari Aarne Kalevi
  • Haaparanta, Anne-Marie
OrganizationsLocationPeople

article

Gas-foamed poly(lactide-co-glycolide) and poly(lactide-co-glycolide) with bioactive glass fibres demonstrate insufficient bone repair in lapine osteochondral defects

  • Hannula, M.
  • Muhonen, V.
  • Uppstu, P.
  • Aula, Antti
  • Haaparanta, Am
  • Kiviranta, I.
  • Rosling, Ari
  • Pyhältö, T.
  • Kellomäki, Minna
  • Järvinen, E.
  • Salonius, Eve
  • Lehto, K.
Abstract

<p>Deep osteochondral defects may leave voids in the subchondral bone, increasing the risk of joint structure collapse. To ensure a stable foundation for the cartilage repair, bone grafts can be used for filling these defects. Poly(lactide-co-glycolide) (PLGA) is a biodegradable material that improves bone healing and supports bone matrix deposition. We compared the reparative capacity of two investigative macroporous PLGA-based biomaterials with two commercially available bone graft substitutes in the bony part of an intra-articular bone defect created in the lapine femur. New Zealand white rabbits (n = 40) were randomized into five groups. The defects, 4 mm in diameter and 8 mm deep, were filled with neat PLGA: a composite material combining PLGA and bioactive glass fibres (PLGA–BGf): commercial beta-tricalcium phosphate (β-TCP) granules: or commercial bioactive glass (BG) granules. The fifth group was left untreated for spontaneous repair. After three months, the repair tissue was evaluated with X-ray microtomography and histology. Relative values comparing the operated knee with its contralateral control were calculated. The relative bone volume fraction (∆BV/TV) was largest in the β-TCP group (p ≤ 0.012), which also showed the most abundant osteoid. BG resulted in improved bone formation, whereas defects in the PLGA–BGf group were filled with fibrous tissue. Repair with PLGA did not differ from spontaneous repair. The PLGA, PLGA–BGf, and spontaneous groups showed thicker and sparser trabeculae than the commercial controls. We conclude that bone repair with β-TCP and BG granules was satisfactory, whereas the investigational PLGA-based materials were only as good as or worse than spontaneous repair.</p>

Topics
  • Deposition
  • impedance spectroscopy
  • glass
  • glass
  • composite
  • void
  • biomaterials