People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Oliveira, Ana L.
Universidade Católica Portuguesa
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2022Adenosine-loaded silk fibroin aerogel particles for wound healing
- 2022Opening new avenues for bioceramicscitations
- 2021New prospects in skin regeneration and repair using nanophased hydroxyapatite embedded in collagen nanofiberscitations
- 2021High efficient strategy for the production of hydroxyapatite/silk sericin nanocompositescitations
- 2020Hydroxyapatite/sericin compositescitations
- 2020High efficient strategy for the production of hydroxyapatite/silk sericin nanocomposites
- 2020Hydroxyapatite/sericin composites:a simple synthesis route under near-physiological conditions of temperature and pH and preliminary study of the effect of sericin on the biomineralization processcitations
- 2019Sterile and dual-porous aerogels scaffolds obtained through a multistep supercritical CO2-based approachcitations
- 2019Sterile and dual-porous aerogels scaffolds obtained through a multistep supercritical CO 2 -based approachcitations
- 2018Combinatory approach for developing silk fibroin scaffolds for cartilage regenerationcitations
- 2017Modulating cell adhesion to polybutylene succinate biotextile constructs for tissue engineering applicationscitations
- 2017Silk-based anisotropical 3D biotextiles for bone regenerationcitations
- 2017Core-shell silk hydrogels with spatially tuned conformations as drug-delivery systemcitations
- 2016Combinatory approach for developing silk fibroin-based scaffolds with hierarchical porosity and enhanced performance for cartilage tissue engineering applications
- 2013Evaluation of novel 3D architectures based on knitting technologies for engineering biological tissues
- 2012Aligned silk-based 3-D architectures for contact guidance in tissue engineeringcitations
- 2009Nucleation and growth of biomimetic apatite layers on 3D plotted biodegradable polymeric scaffoldscitations
- 2005Study of the influence of β-radiation on the properties and mineralization of different starch-based biomaterialscitations
- 2004Pre-mineralisation of starch/polycrapolactone bone tissue engineering scaffolds by a calcium-silicate-based processcitations
- 2003Biomimetic coating of starch based polymeric foams produced by a calcium silicate based methodologycitations
- 2003Bi-composite sandwich moldingscitations
- 2003Sodium silicate gel as a precursor for the in vitro nucleation and growth of a bone-like apatite coating in compact and porous polymeric structurescitations
- 2001Sodium silicate gel induced self-mineralization of different compact and porous polymeric structurescitations
Places of action
Organizations | Location | People |
---|
article
Modulating cell adhesion to polybutylene succinate biotextile constructs for tissue engineering applications
Abstract
Textile-based technologies are powerful routes for the production of three-dimensional porous architectures for tissue engineering applications because of their feasibility and possibility for scaling-up. Herein, the use of knitting technology to produce polybutylene succinate fibre-based porous architectures is described. Furthermore, different treatments have been applied to functionalize the surface of the scaffolds developed: sodium hydroxide etching, ultraviolet radiation exposure in an ozone atmosphere and grafting (acrylic acid, vinyl phosphonic acid and vinyl sulphonic acid) after oxygen plasma activation as a way to tailor cell adhesion. A possible effect of the applied treatments on the bulk properties of the textile scaffolds has been considered and thus tensile tests in dry and hydrated states were also carried out. The microscopy results indicated that the surface morphology and roughness were affected by the applied treatments. The X-ray photoelectron spectroscopy and contact angle measurements showed the incorporation of oxygen-containing groups and higher surface free energy as result of the surface treatments applied. The DNA quantification and scanning electron microscopy analysis revealed that these modifications enhanced cell adhesion and altered cell morphology. Generally, sodium hydroxide treatment altered most significantly the surface properties, which in turn resulted in a high number of cells adherent to these surfaces. Based on the results obtained, the proposed surface treatments are appropriate to modify polybutylene succinate knitting scaffolds, influencing cell adhesion and its potential for use in tissue engineering applications.