People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Khan, Shaukat
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2023Recent Advances of Transition Metal Dichalcogenides‐Based Materials for Energy Storage Devices, in View of Monovalent to Divalent Ionscitations
- 2021Synthesis and Study of Morphology and Biocompatibility of Xanthan Gum/Titanium Dioxide-Based Polyurethane Elastomerscitations
- 2020Experimental Investigations on the Effects of Rotational Speed on Temperature and Microstructure Variations in Incremental Forming of T6- Tempered and Annealed AA2219 Aerospace Alloycitations
Places of action
Organizations | Location | People |
---|
article
Recent Advances of Transition Metal Dichalcogenides‐Based Materials for Energy Storage Devices, in View of Monovalent to Divalent Ions
Abstract
<jats:title>Abstract</jats:title><jats:p>The fast growth of electrochemical energy storage (EES) systems necessitates using innovative, high‐performance electrode materials. Among the various EES devices, rechargeable batteries (RBs) with potential features like high energy density and extensive lifetime are well suited to meet rapidly increasing energy demands. Layered transition metal dichalcogenides (TMDs), typical two dimensional (2D) nanomaterial, are considered auspicious materials for RBs because of their layered structures and large specific surface areas (SSA) that benefit quick ion transportation. This review summarizes and highlights recent advances in TMDs with improved performance for various RBs. Through novel engineering and functionalization used for high‐performance RBs, we briefly discuss the properties, characterizations, and electrochemistry phenomena of TMDs. We summarised that engineering with multiple techniques, like nanocomposites used for TMDs receives special attention. In conclusion, the recent issues and promising upcoming research openings for developing TMDs‐based electrodes for RBs are discussed.</jats:p>