Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Caron, Richard

  • Google
  • 4
  • 5
  • 26

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2023Experimental study on basic and drying creep for an alkali‐activated slag concrete and comparison with existing creep models4citations
  • 2023Microstructure development of slag activated with sodium silicate solution: Experimental characterization and thermodynamic modeling17citations
  • 2022Microstructure and Mechanical Properties of Slag Activated with Sodium Silicatecitations
  • 2022Extension of the fib MC 2010 for basic and drying shrinkage of alkali‐activated slag concretes5citations

Places of action

Chart of shared publication
Patel, Ravi A.
3 / 5 shared
Dehn, Frank
4 / 17 shared
Galliard, Cassandre Le
1 / 5 shared
Lothenbach, Barbara
1 / 314 shared
Miron, George D.
1 / 1 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Patel, Ravi A.
  • Dehn, Frank
  • Galliard, Cassandre Le
  • Lothenbach, Barbara
  • Miron, George D.
OrganizationsLocationPeople

article

Experimental study on basic and drying creep for an alkali‐activated slag concrete and comparison with existing creep models

  • Patel, Ravi A.
  • Dehn, Frank
  • Caron, Richard
Abstract

Slag is a by-product of the steel industry that can be activated using alkali solutions to form concrete. This study presents new experimental results of basic and drying creep behavior of alkali-activated slag (AAS) concrete. Different parameters affecting creep such as loading age, sample size and creep stress-strength ratio were varied for experimental studies. The results show that the basic creep of AAS concrete is higher than that of ordinary Portland cement (OPC) concrete. The drying creep of AAS is lower than for OPC and this could be explained by a higher internal drying during the activation of slag. The experimental results were used to check the applicability of two existing engineering models, the fib MC 2010 and the B4s model, for AAS concrete. It was found that both models could be extended to predict the basic creep of AAS concrete. For drying creep, the B4s could better capture the creep behavior. For the fib MC 2010, a new formulation for drying creep would be required.

Topics
  • impedance spectroscopy
  • strength
  • steel
  • cement
  • activation
  • atomic absorpion spectrometry
  • creep
  • drying