People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hoang, Linh Cao
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (31/31 displayed)
- 2024Determining Concrete Tensile Strength in ASR-Damaged Slabs and Shells Without Transverse Reinforcement
- 2024Full-scale tests of two-storey precast reinforced concrete shear walls:Investigation of strength and deformation capacitycitations
- 2024Full-scale tests of two-storey precast reinforced concrete shear wallscitations
- 2023Mechanical modeling of dowel action and the influence of small amounts of shear reinforcement on the shear-transfer actions in RC beamscitations
- 2023Mechanical modeling of dowel action and the influence of small amounts of shear reinforcement on the shear-transfer actions in RC beamscitations
- 2022Experimental investigation of the influence of stirrup spacing on the shear capacity of reinforced concrete beams
- 2022Experimental investigation of the influence of stirrup spacing on the shear capacity of reinforced concrete beams
- 2022Compression Strength of Reinforced Concrete Cubes Pre-Cracked by Uniaxial and Biaxial Tension
- 2021Experimental Investigation of the Shear Capacity of RC Beams with Very Small Amounts of Shear Reinforcement
- 2021Experimental Investigation of the Shear Capacity of RC Beams with Very Small Amounts of Shear Reinforcement
- 2021Anisotropic Compressive Behaviour of Concrete from Slabs Damaged by Alkali-Silica Reactioncitations
- 2021Keyed shear connections with looped U‐bars subjected to normal and shear forces Part I: Experimental investigationcitations
- 2021Keyed shear connections with looped U‐bars subjected to normal and shear forces Part Icitations
- 2020Solid finite element limit analysis for modelling of pile caps
- 2020Solid finite element limit analysis for modelling of pile caps
- 2020Anisotropic Compressive Behaviour of Concrete from Slabs Damaged by Alkali-Silica Reactioncitations
- 2017Strength of precast concrete shear joints reinforced with high-strength wire ropescitations
- 2017Load Carrying Capacity of Shear Wall T-Connections Reinforced with High Strength Wire Ropes
- 2016Load carrying capacity of shear wall t-connections reinforced with high strength wire ropes
- 2014Alkali-Silica Reaction in Reinforced Concrete Structures, Part II
- 2014Strength Prediction and Failure Modes of Concrete Specimens Subjected to the Split Testcitations
- 2013Tests and limit analysis of loop connections between precast concrete elements loaded in tensioncitations
- 2013Tests and limit analysis of loop connections between precast concrete elements loaded in tensioncitations
- 2011N-V Interaction in Reinforced Concrete Elements without Stirrupscitations
- 2011Shear Capacity of Steel and Polymer Fibre Reinforced Concrete Beamscitations
- 2010Application of plastic theory to shear strength prediction of external prestressed concrete beams
- 2010Shear Strength of Reinforced Concrete Piers and Piles with Hollow Circular Cross Sectioncitations
- 2010Shear strength of heavily reinforced concrete members with circular cross sectioncitations
- 2009Shear Test on RC Elements with Circular Cross Sectioncitations
- 2009Shear strength prediction of circular RC members by the crack sliding modelcitations
- 2008Upper bound calculations of shear resistance in arbitrary curved diagonal cracks
Places of action
Organizations | Location | People |
---|
article
Mechanical modeling of dowel action and the influence of small amounts of shear reinforcement on the shear-transfer actions in RC beams
Abstract
Dowel action of the longitudinal reinforcement in RC beams without and with small amounts of shear reinforcement is typically considered a constant shear contribution determined from the splitting strength of the concrete cover. However, in a recent experimental investigation by the authors, it was shown that the shear force transferred by dowel action for beams without shear reinforcement should be determined from the dowel displacement and a linear elastic model and a rigid plastic dowel model. This article is aimed at extending this model to also cover members with small amounts of shear reinforcement. To that aim, a novel approach to calculate the shear force carried by dowel action of the longitudinal reinforcement in both beams with and without shear reinforcement is presented. The model is derived by establishing an equilibrium of work between the internal stored elastic or dissipated plastic energy and the external work performed by the shear force in the dowel. Additionally, a method to determine the displacement of the dowel from DIC measurements is presented. For the remaining shear-transfer actions, reasonable constitutive models from the literature are adapted. On the basis of DIC measurements, the shear force carried by each of the shear-transfer actions is calculated for 16 shear tests of beams without and with small amounts of shear reinforcement. The sum of shear force carried by each of the shear-transfer actions is shown to predict the applied shear force fairly well, from the development of the critical shear crack until failure. Additionally, it is shown that for beams with shear reinforcement below the minimum requirements according to the current design standards, the shear capacity is governed by aggregate interlock, residual tensile stresses, and the inclination of the compression chord. While for beams with shear reinforcement above the minimum requirements, the shear capacity is governed by the shear reinforcement and dowel action.