Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Alhuri, Mohammed

  • Google
  • 1
  • 5
  • 17

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Strategies for strengthening of corroded reinforced concrete beams using <scp>CFRP</scp> laminates and <scp>UHPC</scp> jacketing17citations

Places of action

Chart of shared publication
Kharma, Khaled
1 / 1 shared
Khalid, Hammad
1 / 1 shared
Ahmad, Shamsad
1 / 4 shared
Maslehuddin, Mohammed
1 / 9 shared
Al-Osta, Mohammed
1 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Kharma, Khaled
  • Khalid, Hammad
  • Ahmad, Shamsad
  • Maslehuddin, Mohammed
  • Al-Osta, Mohammed
OrganizationsLocationPeople

article

Strategies for strengthening of corroded reinforced concrete beams using <scp>CFRP</scp> laminates and <scp>UHPC</scp> jacketing

  • Kharma, Khaled
  • Khalid, Hammad
  • Ahmad, Shamsad
  • Alhuri, Mohammed
  • Maslehuddin, Mohammed
  • Al-Osta, Mohammed
Abstract

<jats:title>Abstract</jats:title><jats:p>This article aims to investigate the flexural behavior of strengthened corroded reinforced concrete (RC) beams using carbon fiber‐reinforced polymer (CFRP) laminates and using a hybrid system of CFRP laminates and ultrahigh‐performance concrete (UHPC) layers. A total of 15 RC beam specimens were prepared, out of which one specimen was uncorroded–unstrengthened, and 14 specimens were corroded using accelerated corrosion set up to cause a significant reduction in the load‐carrying capacity of the RC beams. The damaged covers of the corroded RC beam specimens were first repaired and then strengthened with different strengthening strategies involving CFRP laminates alone as well as the CFRP laminates and UHPC jacketing together. The experimental results obtained by testing the strengthened RC beam specimens in flexure showed a significant enhancement in the load‐carrying capacity and stiffness of the strengthened corroded RC beams. The number of CFRP laminates, hybridization of the CFRP laminates and UHPC layer, and the thickness of the UHPC layer all significantly improved the load‐carrying capacity and stiffness of the strengthened corroded RC beams indicating the possibility of selecting an optimal strategy out of different options for strengthening the corroded beams to achieve a targeted degree of the efficacy of the strengthening. The analytical model developed in this study to estimate the flexural capacity of the strengthened RC beams was found to predict the values of the load‐bearing capacity of the RC beams strengthened using different strategies very close to their respective experimental values.</jats:p>

Topics
  • polymer
  • Carbon
  • corrosion