People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Yang, Bo
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024Multi-modal fusion and feature enhancement U-Net coupling with stem cell niches proximity estimation for voxel-wise GBM recurrence prediction citations
- 2023Development and evaluation of conductive ultra-lightweight cementitious composites for smart and sustainable infrastructure applicationscitations
- 2023Shear performance of lightweight SCC composite beam internally reinforced with CFRP laminate stirrups and GFRP barscitations
- 2023Influence of crumbed rubber inclusion on spalling, microstructure, and mechanical behaviour of UHPC exposed to elevated temperaturescitations
- 2023Shear strengthening performance of fiber reinforced lightweight SCC beamscitations
- 2023Experimental investigation on the structural behaviour of novel non-metallic pultruded circular tubular GFRP T-joints under axial compressioncitations
- 2022Mechanical properties and chloride penetration resistances of very-low-C3A cement based SC-UHP-SFRCs incorporating metakaolin and slagcitations
- 2022Experimental Database on pullout bond performance of steel fiber embedded in ultra-high-strength concretecitations
- 2022Effects of aggregate type, aggregate pretreatment method, supplementary cementitious materials, and macro fibers on fresh and hardened properties of high-strength all-lightweight self-compacting concretecitations
- 2022Investigation on the structural failure behaviour of pultruded circular tubular GFRP multiplanar truss bridges with non-metallic connections through finite element modellingcitations
- 2021High strength flowable lightweight concrete incorporating low C3A cement, silica fume, stalite and macro-polyfelin polymer fibrescitations
- 2019Finite element simulation of circular short CFDST columns under axial compressioncitations
- 2018Experimental tests and design of rubberised concrete-filled double skin circular tubular short columnscitations
- 2018Experimental investigation of rubberised concrete-filled double skin square tubular columns under axial compressioncitations
- 2017Monitoring the on-surface synthesis of graphene nanoribbons by mass spectrometrycitations
- 2016Structural instabilities during cyclic loading of ultrafine-grained copper studied with micro bending experiments
- 2016On-surface synthesis of graphene nanoribbons with zigzag edge topologycitations
- 2014Mechanistic Study of 1,3-Butadiene Formation in Acetylene Hydrogenation over the Pd-Based Catalysts Using Density Functional Calculationscitations
- 2013Influence of surface structures, subsurface carbon and hydrogen, and surface alloying on the activity and selectivity of acetylene hydrogenation on Pd surfaces:A density functional theory studycitations
- 2013Influence of surface structures, subsurface carbon and hydrogen, and surface alloying on the activity and selectivity of acetylene hydrogenation on Pd surfaces: A density functional theory studycitations
Places of action
Organizations | Location | People |
---|
article
Effects of aggregate type, aggregate pretreatment method, supplementary cementitious materials, and macro fibers on fresh and hardened properties of high-strength all-lightweight self-compacting concrete
Abstract
In this research, a new high-strength all-lightweight self-compacting concrete (HALSCC) was developed with a density less than 1760 kg/m(3) and a compressive strength of more than 40 MPa. The effects of different parameters were investigated: pretreatment methods, binders, type of aggregates, and hybrid steel fibers on the properties of HALSCC. The experimental investigation evaluated the properties of fresh, mechanical, and microstructure of several concrete mixtures that incorporate low-C(3)A cement, silica fume, metakaolin, and hybrid steel fibers. The results show that HALSCC can be developed. The binder pretreatment method could improve the compressive strength by 14.1% compared with the water pretreatment method through the strengthening of Zone 1 and Zone 2 of interfacial transition zone. Also, the mixes incorporating stalite could improve the compressive strength by 40.8% and 106% compared to the mixes with scoria and leca respectively. Hybrid length steel fibers could increase the mechanical properties when compared to a single type of fiber.