People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Olubanwo, Adegoke
Coventry University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2022Characteristics of a novel lightweight concretecitations
- 2020Potential and current distribution across different layers of reinforcement in reinforced concrete cathodic protection system- A numerical studycitations
- 2019Predicting the Corrosion Rate of Steel in Cathodically Protected Concrete Using Potential Shiftcitations
- 2018Finite Element Analysis of the Flexural behaviour of Steel-Reinforced GEM-TECH Cementitious Materialcitations
- 2018Investigation of intrinsic de-bonding in bonded concrete overlays: Material characterisation and numerical Studycitations
- 2018Strength and Hydraulic Conductivity of Cement and By - Product Cementitious Materials Improved Soil
- 2017Utilisation of waste cardboard and Nano silica fume in the production of fibre cement board reinforced by glass fibrescitations
- 2016Optimum design for sustainable, 'green' concrete overlays. Part III
- 2016Optimum Design for Sustainable, ‘Green’ Concrete Overlays. Part II: Shear Failure at Cracks and Inadequate Resistance to Reflection Cracking
- 2016Optimum Design for Sustainable, ‘Green’ Concrete Overlays. Part I: (a) Mix-Design, (b) Controlling Flexural Failure
- 2015Interfacial Delamination Failure in Bonded Concrete Overlay Systems - A Review of Theories and Modelling Methods
- 2015Applied mixture optimization techniques for paste design of bonded roller-compacted fibre reinforced polymer modified concrete (BRCFRPMC) overlayscitations
Places of action
Organizations | Location | People |
---|
article
Characteristics of a novel lightweight concrete
Abstract
<p>The growing need to reduce dead weight of structural elements to allow long spanning structures, has always been a key driver in the construction industry's quest to finding materials that can lead to such accomplishments. This paper is concerned with investigating the mechanical properties of a novel lightweight cementitious material made from a mix of sand, cement, water, and admixture. It is environmentally friendly, requiring less cement consumption, self-leveling, and free flowing with potential for structural use in construction. A rigorous experimental testing programme is carried to determine the mechanical properties of the material. Two sets of mixes of target densities 1810 and 1600 kg/m<sup>3</sup> were prepared and tested. The results showed that the admixture improved the properties of the material such as its compressive and flexural strengths. The material can be utilized as a structural member since it gained strength values above 20 MPa after 28 days.</p>