People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Goltermann, Per
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2021Activated Ductile CFRP NSMR Strengtheningcitations
- 2021Activated ductile CFRP NSMR strengtheningcitations
- 2020Ductile response controlled EW CFRP anchor systemcitations
- 2020Ductile response controlled EW CFRP anchor systemcitations
- 2020Shear strength of straight concrete members without shear reinforcement. Reassessment of the effectiveness factors used in the crack sliding theory
- 2019Experimental and numerical studies on the shared activation anchoring of NSMR CFRP applied to RC beams
- 2019Experimental and numerical Studies on the shared Activation Anchoring of NSMR CFRP applied to RC Beams:Seventh Asia-Pacific Conference on FRP in Structures
- 2019Assessment of shear strength of deep RC beams and beams with short shear span without transverse reinforcement
- 2019Experimental and numerical Studies on the shared Activation Anchoring of NSMR CFRP applied to RC Beams
- 2019Shared CFRP activation anchoring method applied to NSMR strengthening of RC beamscitations
- 2016Wood ash used as partly sand and/or cement replacement in mortarcitations
- 2014The Aesthetical quality of SSA-containing mortar and concrete
- 2013Incinerated sewage sludge ash as alternative binder in cement-based materials
- 2012Mechanical anchorage of FRP tendons – A literature reviewcitations
- 2012Reinforced concrete T-beams externally prestressed with unbonded carbon fiber-reinforced polymer tendons
- 2011Numerical Simulation and Experimental Validation of an Integrated Sleeve-Wedge Anchorage for CFRP Rodscitations
- 2011Shear Capacity of Steel and Polymer Fibre Reinforced Concrete Beamscitations
- 2011Shear Capacity of Steel and Polymer Fibre Reinforced Concrete Beamscitations
- 2008In-plane shear test of fibre reinforced concrete panels
Places of action
Organizations | Location | People |
---|
article
Shear strength of straight concrete members without shear reinforcement. Reassessment of the effectiveness factors used in the crack sliding theory
Abstract
Recently it has been shown that the effectiveness factors used in the crack sliding theory are not well suited for predicting the shear strength of beams with large depths. Therefore, formulas for the effective concrete compression strength and the effective tensile strength have been reformulated by changing the size effect factor and adding a term to take into account the maximum aggregate size. Also, the theory has been improved to predict better the shear strength of deep beams and beams with short shear span. This is done by including the effect of the transverse stress. Experimental data for slender beams and deep/short beams with rectangular cross sections have been used for validation of the crack sliding theory. The outcome of this analysis is that the new theory in general are substantially better for predicting shear strength than the old one.