People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Benedictus, Rinze
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2023Intelligent Health Indicators Based on Semi-supervised Learning Utilizing Acoustic Emission Datacitations
- 2023Hierarchical Upscaling of Data-Driven Damage Diagnostics for Stiffened Composite Aircraft Structures
- 2023Intelligent health indicator construction for prognostics of composite structures utilizing a semi-supervised deep neural network and SHM datacitations
- 2023Analysis of Stochastic Matrix Crack Evolution in CFRP Cross-Ply Laminates under Fatigue Loadingcitations
- 2023Delamination Size Prediction for Compressive Fatigue Loaded Composite Structures Via Ultrasonic Guided Wave Based Structural Health Monitoring
- 2022On the Challenges of Upscaling Damage Monitoring Methodologies for Stiffened Composite Aircraft Panelscitations
- 2022How literature reviews influence the selection of fatigue analysis framework
- 2022Early fatigue damage accumulation of CFRP Cross-Ply laminates considering size and stress level effectscitations
- 2021Fusion-based damage diagnostics for stiffened composite panelscitations
- 2021Modeling and imaging of ultrasonic array inspection of side drilled holes in layered anisotropic mediacitations
- 2020Enhancing the fracture toughness of carbon fibre/epoxy composites by interleaving hybrid meltable/non-meltable thermoplastic veilscitations
- 2020Significantly enhanced structural integrity of adhesively bonded PPS and PEEK composite joints by rapidly UV-irradiating the substratescitations
- 2020The influence of interlayer/epoxy adhesion on the mode-I and mode-II fracture response of carbon fibre/epoxy composites interleaved with thermoplastic veilscitations
- 2020Simulation of ultrasonic beam propagation from phased arrays in anisotropic media using linearly phased multi-Gaussian beamscitations
- 2020A gaussian beam based recursive stiffness matrix model to simulate ultrasonic array signals from multi-layered mediacitations
- 2019Systematic multiparameter design methodology for an ultrasonic health monitoring system for full-scale composite aircraft primary structurescitations
- 2019From thin to extra-thick adhesive layer thicknesses:Fracture of bonded joints under mode I loading conditionscitations
- 2018Experimental assessment of the influence of welding process parameters on Lamb wave transmission across ultrasonically welded thermoplastic composite jointscitations
- 2018Incorporating Inductive Bias into Deep Learning
- 2018Full-scale testing of an ultrasonic guided wave based structural health monitoring system for a thermoplastic composite aircraft primary structure
- 2018The stress ratio effect on plastic dissipation during fatigue crack growthcitations
- 2017Modelling of ultrasonic beam propagation from an array through transversely isotropic fibre reinforced composites using Multi Gaussian beams
- 2017Understanding mixed-mode cyclic fatigue delamination growth in unidirectional compositescitations
- 2016Thermo-viscoelastic analysis of GLAREcitations
- 2016Experimental characterisation of Lamb wave propagation through thermoplastic composite ultrasonic welds
- 2016Effect of fiber-matrix adhesion on the creep behavior of CF/PPS compositescitations
- 2016Experimental investigation of the microscopic damage development at mode i fatigue delamination tips in carbon/epoxy laminatescitations
Places of action
Organizations | Location | People |
---|
article
Systematic multiparameter design methodology for an ultrasonic health monitoring system for full-scale composite aircraft primary structures
Abstract
The successful utilization of guided wave-based structural health monitoring (SHM) for detailed quantitative diagnostic of damage in composite aircraft primary structures depends on the excitation frequency, geometry, and positioning of the piezoelectric transducers. This study proposes a novel methodology to consistently define those parameters, which is not tuned for a single damage size, does not resort to unrealistic usage of pure guided wave modes, and is applicable to a generic full-scale composite aircraft primary structure. The proposed criteria for designing the piezoelectric transducer network are based on sensor output, coupled electro-mechanical response of the transducer-structure assembly, energy transfer from the bonded piezoelectric transducer to the structure, wavefront coverage of the monitored area, and measurement equipment capabilities. The design methodology was successfully validated by testing the capabilities of the SHM system for the diagnostic of barely visible impact damage of different severities, applied in different locations on a full-scale thermoplastic composite aircraft stiffened panel.