Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rodriguezpereira, Jhonatan

  • Google
  • 1
  • 9
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Low‐Temperature Atomic Layer Deposition Synthesis of Vanadium Sulfide (Ultra)Thin Films for Nanotubular Supercapacitors3citations

Places of action

Chart of shared publication
Hromadko, Ludek
1 / 2 shared
Kurka, Michal
1 / 7 shared
Michalicka, Jan
1 / 9 shared
Zazpe, Raul
1 / 7 shared
Sepúlveda, Marcela
1 / 2 shared
Sopha, Hanna
1 / 4 shared
Thalluri, Sitaramanjaneya M.
1 / 1 shared
Macak, Jan M.
1 / 3 shared
Kolíbalová, Eva
1 / 2 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Hromadko, Ludek
  • Kurka, Michal
  • Michalicka, Jan
  • Zazpe, Raul
  • Sepúlveda, Marcela
  • Sopha, Hanna
  • Thalluri, Sitaramanjaneya M.
  • Macak, Jan M.
  • Kolíbalová, Eva
OrganizationsLocationPeople

article

Low‐Temperature Atomic Layer Deposition Synthesis of Vanadium Sulfide (Ultra)Thin Films for Nanotubular Supercapacitors

  • Hromadko, Ludek
  • Kurka, Michal
  • Rodriguezpereira, Jhonatan
  • Michalicka, Jan
  • Zazpe, Raul
  • Sepúlveda, Marcela
  • Sopha, Hanna
  • Thalluri, Sitaramanjaneya M.
  • Macak, Jan M.
  • Kolíbalová, Eva
Abstract

<jats:p>Herein, the synthesis of vanadium sulfide (V<jats:sub><jats:italic>x</jats:italic></jats:sub>S<jats:sub><jats:italic>y</jats:italic></jats:sub>) by atomic layer deposition (ALD) based on the use of tetrakis(dimethylamino) vanadium (IV) and hydrogen sulfide is presented for the first time. The (ultra)thin films V<jats:sub><jats:italic>x</jats:italic></jats:sub>S<jats:sub><jats:italic>y</jats:italic></jats:sub> are synthesized in a wide range of temperatures (100–225 °C) and extensively characterized by different methods. The chemical composition of the V<jats:sub><jats:italic>x</jats:italic></jats:sub>S<jats:sub><jats:italic>y</jats:italic></jats:sub> (ultra)thin films reveals different vanadium oxidation states and sulfur‐based species. Extensive X‐ray photoelectron spectroscopy analysis studies the effect of different ALD parameters on the V<jats:sub><jats:italic>x</jats:italic></jats:sub>S<jats:sub><jats:italic>y</jats:italic></jats:sub> chemical composition. Encouraged by the rich chemistry properties of vanadium‐based compounds and based on the variable valences of vanadium, the electrochemical properties of ALD V<jats:sub><jats:italic>x</jats:italic></jats:sub>S<jats:sub><jats:italic>y</jats:italic></jats:sub> (ultra)thin films as electrode material for supercapacitors are further explored. Thereby, nanotubular composites are fabricated by coating TiO<jats:sub>2</jats:sub> nanotube layers (TNTs) with different numbers of V<jats:sub><jats:italic>x</jats:italic></jats:sub>S<jats:sub><jats:italic>y</jats:italic></jats:sub> ALD cycles at low temperature (100 °C). Long‐term cycling tests reveal a gradual decline of electrochemical performance due to the progressive V<jats:sub><jats:italic>x</jats:italic></jats:sub>S<jats:sub><jats:italic>y</jats:italic></jats:sub> thin films dissolution under the experimental conditions. Nevertheless, V<jats:sub><jats:italic>x</jats:italic></jats:sub>S<jats:sub><jats:italic>y</jats:italic></jats:sub>‐coated TNTs exhibit significantly superior capacitance properties as compared to the blank counterparts. The enhanced capacitance properties exhibited are derived from the presence of chemically stable and electrochemically active S‐based species on the TNTs surface.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • compound
  • nanotube
  • thin film
  • composite
  • Hydrogen
  • chemical composition
  • photoelectron spectroscopy
  • vanadium
  • atomic layer deposition