People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kurka, Michal
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2024Optical and chemical properties of As–Se and As–S–Se solution processed thin films prepared <i>via</i> As<sub>50</sub>Se<sub>50</sub> source solution modification
- 2024Low‐Temperature Atomic Layer Deposition Synthesis of Vanadium Sulfide (Ultra)Thin Films for Nanotubular Supercapacitorscitations
- 2023Preparation of solution-processed thin films of As-S-Se system from As40S60 solution modified by amorphous selenium ; Příprava roztokově zpracovaných tenkých vrstev systému As-S-Se z roztoku As40S60 modifikovaného amorfním selenemcitations
- 2023Solution processed multi-layered thin films of Ge20Sb5S75 and Ge20Sb5Se75 chalcogenide glassescitations
- 2021Utilization of As50Se50 thin films in electron beam lithography ; Využití tenkých vrstev As50Se50 v elektronové litografiicitations
- 2021Structuring of solution processed and thermally evaporated As33S67 thin films by soft stamp hot embossing method ; Strukturování z roztoku připravených a napařených tenkých vrstev As33S67 pomocí metody soft stamp hot embossingcitations
- 2020Comparison of solution processed As33S67 thin films deposited using primary amines of various aliphatic chain length ; Srovnání z roztoku deponovaných tenkých vrstev As33S67 připravených s využitím primárních aminů s různou délkou alifatického řetězcecitations
Places of action
Organizations | Location | People |
---|
article
Low‐Temperature Atomic Layer Deposition Synthesis of Vanadium Sulfide (Ultra)Thin Films for Nanotubular Supercapacitors
Abstract
<jats:p>Herein, the synthesis of vanadium sulfide (V<jats:sub><jats:italic>x</jats:italic></jats:sub>S<jats:sub><jats:italic>y</jats:italic></jats:sub>) by atomic layer deposition (ALD) based on the use of tetrakis(dimethylamino) vanadium (IV) and hydrogen sulfide is presented for the first time. The (ultra)thin films V<jats:sub><jats:italic>x</jats:italic></jats:sub>S<jats:sub><jats:italic>y</jats:italic></jats:sub> are synthesized in a wide range of temperatures (100–225 °C) and extensively characterized by different methods. The chemical composition of the V<jats:sub><jats:italic>x</jats:italic></jats:sub>S<jats:sub><jats:italic>y</jats:italic></jats:sub> (ultra)thin films reveals different vanadium oxidation states and sulfur‐based species. Extensive X‐ray photoelectron spectroscopy analysis studies the effect of different ALD parameters on the V<jats:sub><jats:italic>x</jats:italic></jats:sub>S<jats:sub><jats:italic>y</jats:italic></jats:sub> chemical composition. Encouraged by the rich chemistry properties of vanadium‐based compounds and based on the variable valences of vanadium, the electrochemical properties of ALD V<jats:sub><jats:italic>x</jats:italic></jats:sub>S<jats:sub><jats:italic>y</jats:italic></jats:sub> (ultra)thin films as electrode material for supercapacitors are further explored. Thereby, nanotubular composites are fabricated by coating TiO<jats:sub>2</jats:sub> nanotube layers (TNTs) with different numbers of V<jats:sub><jats:italic>x</jats:italic></jats:sub>S<jats:sub><jats:italic>y</jats:italic></jats:sub> ALD cycles at low temperature (100 °C). Long‐term cycling tests reveal a gradual decline of electrochemical performance due to the progressive V<jats:sub><jats:italic>x</jats:italic></jats:sub>S<jats:sub><jats:italic>y</jats:italic></jats:sub> thin films dissolution under the experimental conditions. Nevertheless, V<jats:sub><jats:italic>x</jats:italic></jats:sub>S<jats:sub><jats:italic>y</jats:italic></jats:sub>‐coated TNTs exhibit significantly superior capacitance properties as compared to the blank counterparts. The enhanced capacitance properties exhibited are derived from the presence of chemically stable and electrochemically active S‐based species on the TNTs surface.</jats:p>