People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Michalicka, Jan
Brno University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Low‐Temperature Atomic Layer Deposition Synthesis of Vanadium Sulfide (Ultra)Thin Films for Nanotubular Supercapacitorscitations
- 2023Carboxymethyl starch as a reducing and capping agent in the hydrothermal synthesis of selenium nanostructures for use with three-dimensional-printed hydrogel carrierscitations
- 2022Hierarchical Atomic Layer Deposited V<sub>2</sub>O<sub>5</sub> on 3D Printed Nanocarbon Electrodes for High‐Performance Aqueous Zinc‐Ion Batteriescitations
- 2022Effect of Gd addition on the structural and magnetic properties of L1(0)-FePt alloy thin filmscitations
- 2021The Growth, Composition, and Functional Properties of Self‐Organized Nanostructured ZrO2‐Al2O3 Anodic Films for Advanced Dielectric Applicationscitations
- 2021Atomic layer deposition of photoelectrocatalytic material on 3D-printed nanocarbon structures ; Depozice atomárních vrstev fotoelektrokatalytického materiálu na 3D tištěné uhlíkové nanostruktury.citations
- 2020Laser-induced crystallization of anodic TiO2 nanotube layerscitations
- 2020Atomic Layer Deposition of MoSe2 Using New Selenium Precursors ; Depozice atomárních vrstev MoSe2 s použitím nových selenových prekurzorůcitations
- 2020Atomic Layer Deposition of MoSe2 Using New Selenium Precursorscitations
Places of action
Organizations | Location | People |
---|
article
Low‐Temperature Atomic Layer Deposition Synthesis of Vanadium Sulfide (Ultra)Thin Films for Nanotubular Supercapacitors
Abstract
<jats:p>Herein, the synthesis of vanadium sulfide (V<jats:sub><jats:italic>x</jats:italic></jats:sub>S<jats:sub><jats:italic>y</jats:italic></jats:sub>) by atomic layer deposition (ALD) based on the use of tetrakis(dimethylamino) vanadium (IV) and hydrogen sulfide is presented for the first time. The (ultra)thin films V<jats:sub><jats:italic>x</jats:italic></jats:sub>S<jats:sub><jats:italic>y</jats:italic></jats:sub> are synthesized in a wide range of temperatures (100–225 °C) and extensively characterized by different methods. The chemical composition of the V<jats:sub><jats:italic>x</jats:italic></jats:sub>S<jats:sub><jats:italic>y</jats:italic></jats:sub> (ultra)thin films reveals different vanadium oxidation states and sulfur‐based species. Extensive X‐ray photoelectron spectroscopy analysis studies the effect of different ALD parameters on the V<jats:sub><jats:italic>x</jats:italic></jats:sub>S<jats:sub><jats:italic>y</jats:italic></jats:sub> chemical composition. Encouraged by the rich chemistry properties of vanadium‐based compounds and based on the variable valences of vanadium, the electrochemical properties of ALD V<jats:sub><jats:italic>x</jats:italic></jats:sub>S<jats:sub><jats:italic>y</jats:italic></jats:sub> (ultra)thin films as electrode material for supercapacitors are further explored. Thereby, nanotubular composites are fabricated by coating TiO<jats:sub>2</jats:sub> nanotube layers (TNTs) with different numbers of V<jats:sub><jats:italic>x</jats:italic></jats:sub>S<jats:sub><jats:italic>y</jats:italic></jats:sub> ALD cycles at low temperature (100 °C). Long‐term cycling tests reveal a gradual decline of electrochemical performance due to the progressive V<jats:sub><jats:italic>x</jats:italic></jats:sub>S<jats:sub><jats:italic>y</jats:italic></jats:sub> thin films dissolution under the experimental conditions. Nevertheless, V<jats:sub><jats:italic>x</jats:italic></jats:sub>S<jats:sub><jats:italic>y</jats:italic></jats:sub>‐coated TNTs exhibit significantly superior capacitance properties as compared to the blank counterparts. The enhanced capacitance properties exhibited are derived from the presence of chemically stable and electrochemically active S‐based species on the TNTs surface.</jats:p>