People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Boehme, Simon C.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Size- and temperature-dependent lattice anisotropy and structural distortion in CsPbBr 3 quantum dots by reciprocal space X-ray total scattering analysiscitations
- 2024Quantifying the Size‐Dependent Exciton‐Phonon Coupling Strength in Single Lead‐Halide Perovskite Quantum Dotscitations
- 2024Quantifying the size-ddependent exciton-phonon coupling strength in single lead-halide perovskite quantum dotscitations
- 2024Quantifying Förster resonance energy transfer from single perovskite quantum dots to organic dyescitations
- 2024Designer phospholipid capping ligands for soft metal halide nanocrystalscitations
- 2023Strongly Confined CsPbBr3 Quantum Dots as Quantum Emitters and Building Blocks for Rhombic Superlatticescitations
- 2023Strongly Confined CsPbBr3 Quantum Dots as Quantum Emitters and Building Blocks for Rhombic Superlattices.
- 2023Size‐ and Temperature‐Dependent Lattice Anisotropy and Structural Distortion in CsPbBr<sub>3</sub> Quantum Dots by Reciprocal Space X‐ray Total Scattering Analysiscitations
- 2023Strongly confined CsPbBr 3 quantum dots as quantum emitters and building blocks for rhombic superlatticescitations
- 2023Designer Phospholipid Capping Ligands for Soft Metal Halide Nanocrystalscitations
- 2021Correlating Ultrafast Dynamics, Liquid Crystalline Phases, and Ambipolar Transport in Fluorinated Benzothiadiazole Dyescitations
- 2021Pressure-induced perovskite-to-non-perovskite phase transition in CsPbBr 3citations
- 2021Pressure‐Induced Perovskite‐to‐non‐Perovskite Phase Transition in CsPbBr<sub>3</sub>citations
- 2021Synthesis and characterization of the ternary nitride semiconductor Zn 2 VN 3 : theoretical prediction, combinatorial screening, and epitaxial stabilizationcitations
- 2021Hybrid 0D antimony halides as air-stable luminophores for high-spatial-resolution remote thermographycitations
- 2018Extraordinary Interfacial Stitching between Single All-Inorganic Perovskite Nanocrystalscitations
- 2018Extraordinary Interfacial Stitching between Single All-Inorganic Perovskite Nanocrystalscitations
Places of action
Organizations | Location | People |
---|
article
Size‐ and Temperature‐Dependent Lattice Anisotropy and Structural Distortion in CsPbBr<sub>3</sub> Quantum Dots by Reciprocal Space X‐ray Total Scattering Analysis
Abstract
<jats:p> Lead halide perovskite nanocrystals (NCs) have emerged as next‐generation semiconductors capable of unifying superior photoemission properties, facile and inexpensive preparation, compositional and structural versatility. Among them, CsPbBr<jats:sub>3</jats:sub> is a model system in theoretical and experimental studies owing to its intrinsic chemical stability. Nonetheless, knowledge of the precise magnitude and the size‐ and temperature‐dependent lattice and structural distortions is lacking, and the static/dynamic nature of disorder in NCs remains an open question. Herein, robust reciprocal space X‐ray total scattering analysis is applied and accurate lattice distortions, PbBr bond distances, and PbBrPb angles versus NCs size are extracted. The lattice anisotropy increases upon expansion on downsizing while, upon contraction on cooling, the lattice distortion behaves differently at intermediate (9 nm) and ultrasmall (5 nm) sizes and from the bulk. Bond distances (stretched by ≈1%) do not show any size dependence, whereas equatorial and axial angles denote more symmetric octahedral arrangements in the smallest sizes, where they differ by ≈2° compared to ≈8° in the bulk. Anomalously high atomic displacement parameters of axial bromine ions persisting down to cryogenic temperatures suggest statically disordered octahedral tilts. These results provide insights having important implications on size‐dependent emission properties and the exciton fine structure.</jats:p>