Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Banerjee, Sanjoy

  • Google
  • 1
  • 11
  • 20

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Direct Ink Writing of 3D Zn Structures as High‐Capacity Anodes for Rechargeable Alkaline Batteries20citations

Places of action

Chart of shared publication
Lambert, Timothy
1 / 1 shared
Zhu, Cheng
1 / 1 shared
Buuren, Anthony Van
1 / 2 shared
Schorr, Noah B.
1 / 1 shared
Qi, Zhen
1 / 1 shared
Wygant, Bryan R.
1 / 1 shared
Turney, Damon
1 / 1 shared
Spoerke, Erik D.
1 / 1 shared
Yadav, Gautam G.
1 / 1 shared
Worsley, Marcus A.
1 / 2 shared
Duoss, Eric B.
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Lambert, Timothy
  • Zhu, Cheng
  • Buuren, Anthony Van
  • Schorr, Noah B.
  • Qi, Zhen
  • Wygant, Bryan R.
  • Turney, Damon
  • Spoerke, Erik D.
  • Yadav, Gautam G.
  • Worsley, Marcus A.
  • Duoss, Eric B.
OrganizationsLocationPeople

article

Direct Ink Writing of 3D Zn Structures as High‐Capacity Anodes for Rechargeable Alkaline Batteries

  • Lambert, Timothy
  • Zhu, Cheng
  • Buuren, Anthony Van
  • Schorr, Noah B.
  • Qi, Zhen
  • Wygant, Bryan R.
  • Turney, Damon
  • Spoerke, Erik D.
  • Banerjee, Sanjoy
  • Yadav, Gautam G.
  • Worsley, Marcus A.
  • Duoss, Eric B.
Abstract

<jats:sec><jats:label /><jats:p>The relationship between structure and performance in alkaline Zn batteries is undeniable, where anode utilization, dendrite formation, shape change, and passivation issues are all addressable through anode morphology. While tailoring 3D hosts can improve the electrode performance, these practices are inherently limited by scaffolds that increase the mass or volume. Herein, a direct write strategy for producing template‐free metallic 3D Zn electrode architectures is discussed. Concentrated inks are customized to build designs with low electrical resistivity (5 × 10<jats:sup>−4</jats:sup> Ω cm), submillimeter sizes (200 μm filaments), and high mechanical stability (Young's modulus of 0.1–0.5 GPa at relative densities of 0.28–0.46). A printed Zn lattice anode versus NiOOH cathode with an alkaline polymer gel electrolyte is then demonstrated. This Zn||NiOOH cell operates for over 650 cycles at high rates of 25 mA cm<jats:sup>−2</jats:sup> with an average areal capacity of 11.89 mAh cm<jats:sup>−2</jats:sup>, a cumulative capacity of 7.8 Ah cm<jats:sup>−2</jats:sup>, and a volumetric capacity of 23.78 mAh cm<jats:sup>−3</jats:sup>. A thicker Zn anode achieves an ultrahigh areal capacity of 85.45 mAh cm<jats:sup>−2</jats:sup> and a volumetric capacity of 81.45 mAh cm<jats:sup>−3</jats:sup> without significant microstructural changes after 50 cycles.</jats:p></jats:sec>

Topics
  • impedance spectroscopy
  • morphology
  • polymer
  • resistivity
  • size-exclusion chromatography