People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bernhard, Michael Christian
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024In situ study and assessment of the phosphorus-induced solute drag effect on the grain boundary mobility of austenitecitations
- 2024Experimental investigation and computational thermodynamics of the quaternary system Fe-C-Mn-S
- 2024On the Role of Tramp Elements for Surface Defect Formation in Continuous Casting of Steelcitations
- 2024The simple microsegregation model for steel considering MnS formation in the liquid and solid phasescitations
- 2024Critical Examination of the Representativeness of Austenite Grain Growth Studies Performed In Situ Using HT-LSCM and Application to Determine Growth-inhibiting Mechanismscitations
- 2023Grain boundary mobility of γ-Fe in high-purity iron during isothermal annealingcitations
- 2023Hot tear prediction in large sized high alloyed turbine steel parts - experimental based calibration of mechanical data and model validation
- 2023Thermodynamic modeling of the Fe-Sn system including an experimental re-assessment of the liquid miscibility gapcitations
- 2023Decomposition of γ-Fe in 0.4C-1.8Si-2.8Mn-0.5Al steel during a continuous cooling process: A comparative study using in-situ HT-LSCM, DSC and dilatometrycitations
- 2023Impurities and tramp elements in steel: Thermodynamic aspects and the application to solidification processes
- 2023Einfluss der Düsenparameter auf die Kühlbedingungen in der Sekundärkühlzone einer Brammengießanlagecitations
- 2022A Near-Process 2D Heat-Transfer Model for Continuous Slab Casting of Steelcitations
- 2022Selected metallurgical models for computationally efficient prediction of quality-related issues in continuous slab casting of steel
- 2022Experimental thermodynamics for improving CALPHAD optimizations at the Chair of Ferrous Metallurgy
- 2021Characterization of the gamma-loop in the Fe-P system by coupling DSC and HT-LSCM with complementary in-situ experimental techniquescitations
- 2021Investigations on hot tearing in a continuous slab caster: Numerical modelling combined with analysis of plant results
- 2020Experimental Study of High Temperature Phase Equilibria in the Iron-Rich Part of the Fe-P and Fe-C-P Systemscitations
- 2019High precious phase diagrams – a roadmap for a successful casting processing
Places of action
Organizations | Location | People |
---|
article
On the Role of Tramp Elements for Surface Defect Formation in Continuous Casting of Steel
Abstract
In the course of the decarbonization of steel production, electric steel production will continue to gain importance. The processing of low-quality scrap will also play an important role, which may lead to an increase in the content of so-called tramp elements in steel production and further processing. This article examines the effect of the elements Cu, Sn, and Ni on the formation of surface cracks under the conditions of the continuous casting process. Results of an in situ bending test are compared with the results of the experimental simulation of high-temperature oxidation and thermodynamic analysis based on the CALculation of PHase Diagrams (CALPHAD) approach. For a temperature of 900 °C, an equivalent Cu content of 0.20 wt% must be considered as the critical upper limit. The presumable reason is the existence of Cu- and Sn-rich liquid phases at the austenite grain boundaries. The results clearly show the effect of the investigated elements but also point to the importance of the gas atmosphere and cooling conditions on the results. This can be a groundbreaking result for extending the process window for casting steels with increased tramp element contents.