Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Norrena, Julius

  • Google
  • 2
  • 6
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Coupling of Solidification and Heat Transfer Simulations with Interpretable Machine Learning Algorithms to Predict Transverse Cracks in Continuous Casting of Steel3citations
  • 2023Assessing the Effects of Steel Composition on Surface Cracks in Continuous Casting with Solidification Simulations and Phenomenological Quality Criteria for Quality Prediction Applications4citations

Places of action

Chart of shared publication
Alatarvas, Tuomas
2 / 8 shared
Visuri, Villevaltteri
1 / 2 shared
Louhenkilpi, Seppo
2 / 7 shared
Bogdanoff, Agne
2 / 3 shared
Fabritius, Timo
2 / 15 shared
Visuri, Ville-Valtteri
1 / 10 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Alatarvas, Tuomas
  • Visuri, Villevaltteri
  • Louhenkilpi, Seppo
  • Bogdanoff, Agne
  • Fabritius, Timo
  • Visuri, Ville-Valtteri
OrganizationsLocationPeople

article

Coupling of Solidification and Heat Transfer Simulations with Interpretable Machine Learning Algorithms to Predict Transverse Cracks in Continuous Casting of Steel

  • Alatarvas, Tuomas
  • Visuri, Villevaltteri
  • Louhenkilpi, Seppo
  • Norrena, Julius
  • Bogdanoff, Agne
  • Fabritius, Timo
Abstract

<jats:p> The formation of defects such as cracks in continuous casting deteriorates the quality of cast products and efficiency of steelmaking. To evaluate the risks and identify the root causes of defect formation, phenomenological quality criteria computed with a solidification and microstructure model known as InterDendritic Solidification (IDS) have previously been applied. This approach is computationally efficient and provides a fundamental perspective to defect formation in continuous casting. The aim of this work is to study the capabilities of these criteria as features in predicting transverse cracking with interpretable machine learning models. IDS is coupled with a heat transfer model known as Tempsimu to simulate the continuous casting process. Measured compositions are utilized in the simulations and defects reported at a steelmaking plant are used as labels in classification. Logistic regression, decision tree, and Gaussian Naïve Bayes classifiers are developed to predict transverse cracking in peritectic C–Mn, low‐carbon B–Ti microalloyed, and peritectic Nb‐microalloyed steels. The corresponding balanced accuracies of the best classifiers from cross‐validation are 92%, 94.6%, and 82.8%. Due to the good performance and the interpretability of the developed classifiers, the fundamental causes of transverse cracking and possibilities of avoiding it by changes in the compositions are identified.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • Carbon
  • simulation
  • crack
  • steel
  • solidification
  • machine learning
  • continuous casting