People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zheludkevich, Mikhail
Helmholtz-Zentrum Hereon
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Exploring the Effect of Microstructure and Surface Recombination on Hydrogen Effusion in Zn–Ni‐Coated Martensitic Steels by Advanced Computational Modelingcitations
- 2023Searching the chemical space for effective magnesium dissolution modulators: a deep learning approach using sparse features
- 2023Predicting corrosion inhibition efficiencies of small organic molecules using data-driven techniques
- 2022Chromate-Free Corrosion Protection Strategies for Magnesium Alloys—A Review: Part II—PEO and Anodizingcitations
- 2022The Role of Cu-Based Intermetallic on the Direct Growth of a ZnAl LDH Film on AA2024citations
- 2021The Influence of in‐situ Anatase Particle Addition on the Formation and Properties of Multi‐Functional Plasma Electrolytic Oxidation Coatings on AA2024 Aluminium Alloycitations
- 2021The Stability and Chloride Entrapping Capacity of ZnAl-NO2 LDH in High-Alkaline/Cementitious Environmentcitations
- 2021Predicting the inhibition efficiencies of magnesium dissolution modulators using sparse machine learning models
- 2020A first-principles analysis of the charge transfer in magnesium corrosioncitations
- 2020A first-principles analysis of the charge transfer in magnesium corrosioncitations
- 2020ATR-FTIR in Kretschmann configuration integrated with electrochemical cell as in situ interfacial sensitive tool to study corrosion inhibitors for magnesium substrates
- 2020Magnetic Properties of La<sub>0.9</sub>A<sub>0.1</sub>MnO<sub>3</sub> (A: Li, Na, K) Nanopowders and Nanoceramicscitations
- 2020Magnetic Properties of La0.9A0.1MnO3 (A: Li, Na, K) Nanopowders and Nanoceramicscitations
- 2019Data science based mg corrosion engineering
- 2019Effect of unequal levels of deformation and fragmentation on the electrochemical response of friction stir welded AA2024-T3 alloycitations
- 2019Enhanced predictive corrosion modeling with implicit corrosion productscitations
- 2017Role of Phase Composition of PEO Coatings on AA2024 for In-Situ LDH Growthcitations
- 2017Direct Synthesis of Electrowettable Carbon Nanowall–Diamond Hybrid Materials from Sacrificial Ceramic Templates Using HFCVDcitations
Places of action
Organizations | Location | People |
---|
article
Exploring the Effect of Microstructure and Surface Recombination on Hydrogen Effusion in Zn–Ni‐Coated Martensitic Steels by Advanced Computational Modeling
Abstract
<jats:p>Ultrahigh‐strength steel (UHSS) structures are plated with Zn–Ni coatings because of their excellent corrosion resistance properties, but the plating process is accompanied by the production of hydrogen. The presence of hydrogen in steel results in hydrogen embrittlement. Hence, during the production of UHSS parts, dedicated outgassing steps are employed to remove the diffusible hydrogen from the steel. In a production environment, the real effect of the outgassing process and the outgassing efficiency is unknown for parts coated with Zn–Ni. Hence, a finite element model is developed to capture the evolution of the hydrogen concentration profile in coated UHSS parts during outgassing to study the influence of coating morphology and microstructural features of steel. In order to develop the geometry of the model, scanning electron microscope images are analyzed to understand the microstructure and morphology of the coating. Numerical samples are generated by combining different coating morphologies with steel substrates of varying microstructural features to attain a series of samples with varying features. The results of the outgassing simulations clearly demonstrate the major role of the coating morphology on the hydrogen flux.</jats:p>