People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Thiele, Kathrin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Investigating the Origin of Non-Metallic Inclusions in Ti-Stabilized ULC Steels Using Different Tracing Techniquescitations
- 2023Different Approaches to Trace the Source of Non-Metallic Inclusions in Steel
- 2023Application of tracing techniques to determine the source of alumina inclusions in the clogging layer of Ti-stabilized ULC steels
- 2023Optimization of the Two- and Three-DimensionalCharacterization of Rare Earth-Traced Deoxidation Productscitations
- 2023Comparison of tracing deoxidation products with rare earth elements in the industry and on a laboratory scale
- 2023The Behavior of Phosphorus in the Hydrogen-Based Direct Reduction—Smelter Ironmaking Routecitations
- 2022Different Approaches to Trace the Source of Non-Metallic Inclusions in Steelcitations
- 2022Classification of non-metallic inclusions in steel by data-driven machine learning methodscitations
- 2022Evaluation of different alloying concepts to trace non-metallic inclusions by adding rare earths on a laboratory scalecitations
- 2022Application of ICP-MS to study the evolution of non-metallic inclusions in steelmaking
Places of action
Organizations | Location | People |
---|
article
The Behavior of Phosphorus in the Hydrogen-Based Direct Reduction—Smelter Ironmaking Route
Abstract
Direct reduction (DR) nowadays relies on high-grade iron ores, characterized by a high total iron content and low contents of tramp elements. Since their supply is limited and cost-intensive, applying lower-grade ores is a relevant topic for the future. Therefore, the behavior of phosphorus in unbeneficiated magnetitic ore during hydrogen-based DR is studied. Phosphorus remains strongly bound as apatite whether raw or preoxidized fine ore is reduced in a fluidized bed or raw lump ore is reduced under shaft furnace conditions. That is an essential factor for the subsequent melting step, whose behavior is evaluated using thermodynamic calculations and published data from the literature. Although the smelter-reducing conditions are not ideal for phosphorus withdrawal, one can expect it to be better than the blast furnace. Combining that with the outstanding dephosphorization capacity of the basic oxygen furnace (BOF), the route DR-smelter-BOF appears optimal for processing high-phosphorus iron ores.