Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Krueger, Lutz

  • Google
  • 2
  • 10
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Hydrogen Embrittlement in a Plasma Tungsten Inert Gas‐Welded Austenitic CrMnNi Stainless Steel2citations
  • 2022Effect of N<sub>2</sub>&ndash;H<sub>2</sub> Ratio during Conventional Plasma Nitriding of Intermetallic FeAl40 Alloy on Electrochemical Corrosion Parameters in Sulphuric Acid3citations

Places of action

Chart of shared publication
Schröder, Christina
1 / 1 shared
Hempel, Christian
1 / 2 shared
Quitzke, Caroline
1 / 3 shared
Wendler, Marco
1 / 7 shared
Mandel, Marcel
2 / 5 shared
Volkova, Olena
1 / 31 shared
Radajewski, Markus
1 / 4 shared
Biermann, Horst
1 / 342 shared
Le, Ngoc Minh
1 / 1 shared
Dalke, Anke
1 / 8 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Schröder, Christina
  • Hempel, Christian
  • Quitzke, Caroline
  • Wendler, Marco
  • Mandel, Marcel
  • Volkova, Olena
  • Radajewski, Markus
  • Biermann, Horst
  • Le, Ngoc Minh
  • Dalke, Anke
OrganizationsLocationPeople

article

Hydrogen Embrittlement in a Plasma Tungsten Inert Gas‐Welded Austenitic CrMnNi Stainless Steel

  • Schröder, Christina
  • Hempel, Christian
  • Quitzke, Caroline
  • Wendler, Marco
  • Mandel, Marcel
  • Volkova, Olena
  • Krueger, Lutz
  • Radajewski, Markus
Abstract

<jats:sec><jats:label /><jats:p>The study evaluates the effect of electrochemical hydrogen charging on the tensile properties and fracture behavior of the plasma tungsten inert gas weld of the high‐alloy austenitic steel X3CrMnNiMoN17‐8‐4 in comparison to the pure base metal (BM). The weld metal exhibits a higher susceptibility to hydrogen embrittlement than the BM, which is mainly expressed by a loss in ductility. Based on the performed electron backscatter diffraction and X‐ray diffraction examinations, this is attributed to the higher amount of δ‐ferrite and the higher dislocation density in the weld zone. Furthermore, fractographic analyses reveal a change in the manner of fracture mode from ductile to brittle fracture starting from the edge in the hydrogen charged samples. The wider area of brittle fracture in the weld seam in relation to the BM indicates that hydrogen penetrates deeper into the material. Consequently, the diffusivity of hydrogen in the weld seam is determined to be significantly higher than in the BM.</jats:p></jats:sec>

Topics
  • density
  • impedance spectroscopy
  • stainless steel
  • Hydrogen
  • dislocation
  • electron backscatter diffraction
  • size-exclusion chromatography
  • susceptibility
  • fracture behavior
  • tungsten
  • diffusivity
  • ductility