Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tamanna, Nusrat

  • Google
  • 4
  • 2
  • 10

University of Warwick

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2022Effect of Sample Geometry on Strain Uniformity and Double Hit Compression Tests for Softening Kinetics Determination1citations
  • 2022Effect of sample geometry on strain uniformity and double hit compression tests for softening kinetics determination1citations
  • 2021Optimising compression testing for strain uniformity to facilitate microstructural assessment during recrystallisation4citations
  • 2021Optimising compression testing for strain uniformity to facilitate microstructural assessment during recrystallisation4citations

Places of action

Chart of shared publication
Davis, Claire
3 / 47 shared
Slater, Carl
2 / 16 shared
Chart of publication period
2022
2021

Co-Authors (by relevance)

  • Davis, Claire
  • Slater, Carl
OrganizationsLocationPeople

article

Effect of Sample Geometry on Strain Uniformity and Double Hit Compression Tests for Softening Kinetics Determination

  • Tamanna, Nusrat
Abstract

Static softening is an essential process during the hot rolling of steel to refine grain size and improve mechanical properties. The double hit test is used to measure the static softening volume fraction from the flow stress curves. Herein, the influence of different sample geometries on the determination of softening fraction from the double hit test for conditions where 0–99% softening is expected. The double hit tests are modeled in DEFORM for conventional sample geometries in both uniaxial compression and standard plane strain compression tests, and an additional simulation of a modified plane strain compression test sample geometry, designed to provide more uniform strain distributions, is also performed. A user routine is incorporated into the model to predict the localized softening volume fraction from localized strain based on known softening equations and set back the localized strain value to zero while the softening volume fraction reaches 85%. The standard plane strain compression test geometry shows a strong strain gradient resulting in inaccurate softening fraction volume predictions from flow stress, whereas the uniaxial compression test and modified plane strain compression test geometries show better predictions of softening volume fraction from the flow stress data.

Topics
  • impedance spectroscopy
  • grain
  • grain size
  • simulation
  • steel
  • compression test
  • hot rolling