Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wieser, Gerhard

  • Google
  • 1
  • 7
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022A Near-Process 2D Heat-Transfer Model for Continuous Slab Casting of Steel7citations

Places of action

Chart of shared publication
Ilie, Sergiu
1 / 18 shared
Laschinger, Julian
1 / 2 shared
Preuler, Lukas
1 / 4 shared
Bernhard, Christian
1 / 53 shared
Taferner, Matthias
1 / 4 shared
Bernhard, Michael Christian
1 / 18 shared
Santos, Gabriel
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Ilie, Sergiu
  • Laschinger, Julian
  • Preuler, Lukas
  • Bernhard, Christian
  • Taferner, Matthias
  • Bernhard, Michael Christian
  • Santos, Gabriel
OrganizationsLocationPeople

article

A Near-Process 2D Heat-Transfer Model for Continuous Slab Casting of Steel

  • Ilie, Sergiu
  • Laschinger, Julian
  • Preuler, Lukas
  • Bernhard, Christian
  • Taferner, Matthias
  • Bernhard, Michael Christian
  • Santos, Gabriel
  • Wieser, Gerhard
Abstract

The market requirements on steel products with the highest surface and internal quality demand stimulate a systematic control of the steel solidification behavior during the continuous casting process. Computational process modeling is increasingly applied to understand and optimize casting practices and calibrate the soft reduction to guarantee the required product quality. In this work, we present an overview of m2CAST as a “development platform” for the continuous casting process. This platform consists of a numerical heat transfer model, considers results of laboratory experiments in the calculations, e.g. thermal analysis and nozzle measuring stand (NMS), and provides the option to use relevant process data. We investigated two case studies on a continuous slab caster at voestalpine Stahl Linz GmbH. In doing so, thermal boundary conditions obtained by the NMS were implemented, and the simulation trials were validated with temperature measurements of the dragged thermocouple method installed during the casting process. The temperature distribution over the strand width was measured additionally with two pyrometers placed in the straightening zone. Excellent agreement between the calculated strand surface temperature and the measured temperature was obtained. Furthermore, the results indicate the relevance of considering the roller bearing areas in defining the boundary conditions to accurately predict the shape of the crater end in the casting machine.

Topics
  • impedance spectroscopy
  • surface
  • experiment
  • simulation
  • steel
  • thermal analysis
  • solidification
  • continuous casting