People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kestens, Leo A. I.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Comparative analysis of crystal plasticity models in predicting deformation texture in IF-Steelcitations
- 2023Evaluation of 3D-Printed Magnetic Materials For Additively-Manufactured Electrical Machinescitations
- 2023Process optimization and characterization of dense pure copper parts produced by paste-based 3D micro-extrusioncitations
- 2023Material Engineering of 3D-Printed Silicon Steel Alloys for the Next Generation of Electrical Machines and Sustainable Electromobilitycitations
- 2022Analysis of ESAFORM 2021 cup drawing benchmark of an Al alloy, critical factors for accuracy and efficiency of FE simulationscitations
- 2022Analysis of ESAFORM 2021 cup drawing benchmark of an Al alloy, critical factors for accuracy and efficiency of FE simulationscitations
- 2022Analysis of ESAFORM 2021 cup drawing benchmark of an Al alloy, critical factors for accuracy and efficiency of FE simulations.citations
- 2022The Role of Parent Phase Topology in Double Young–Kurdjumow–Sachs Variant Selection during Phase Transformation in Low-Carbon Steelscitations
- 2021Microstructure, Anisotropy and Formability Evolution of an Annealed AISI 430 Stainless Steel Sheetcitations
- 2017Use of local electrochemical methods (SECM, EC-STM) and AFM to differentiate microstructural effects (EBSD) on very pure coppercitations
- 2016The effect of heating rate on the recrystallization behavior in cold rolled ultra low carbon steelcitations
- 2015Shear banding and its contribution to texture evolution in rotated Goss orientations of BCC structured materialscitations
- 2012Texture evolution during asymmetrical warm rolling and subsequent annealing of electrical steelcitations
- 2012Texture Control in Steel and Aluminium Alloys by Rolling and Recrystallization in Non-Conventional Sheet Manufacturingcitations
Places of action
Organizations | Location | People |
---|
article
Microstructure, Anisotropy and Formability Evolution of an Annealed AISI 430 Stainless Steel Sheet
Abstract
<jats:sec><jats:label /><jats:p>The effect of the microstructure on the principal strain paths (uniaxial, plane, and biaxial) in the formability processes of ferritic stainless steel AISI 430 sheets is studied. The Marciniak test (determination of the plastic strain of sheet metal with a flat tip punch) is applied to determine the forming limit curves and different strain levels in the strain paths by the digital image correlation technique. The formability is discussed in light of the microstructure, standard mechanical properties, work hardening behavior, and anisotropy measurements (<jats:italic>R</jats:italic>‐value). Electron backscatter diffraction analysis is carried out to determine the texture of the selected strain paths. The texture evolution shows a marked γ (<111>// normal direction [ND]) fiber and cube ({001} <100>) texture component under the biaxial strain mode, whereas the α (<110>// rolling direction [RD]) fiber is somewhat favored under uniaxial plane strain. The results are compared with texture simulations performed under the fully constrained Taylor model, finding reasonable agreement with the experimentally measured main components.</jats:p></jats:sec>