People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Degischer, Hans Peter
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2013Precipitation kinetics in warm forming of AW-7020 alloycitations
- 2012Determination of the mechanism of restoration in subtransus hot deformation of Ti-6Al-4Vcitations
- 2012Hot deformation behaviour of low alloyed steelcitations
- 2012Influence of Strain Rate on Hot Ductility of a V-Microalloyed Steel Slabcitations
- 2008The Effects of Different Architectures on Thermal Fatigue in Particle Reinforced MMC for Heat Sink Applicationscitations
Places of action
Organizations | Location | People |
---|
article
Influence of Strain Rate on Hot Ductility of a V-Microalloyed Steel Slab
Abstract
The hot ductility and malleability of a vanadium-microalloyed steel is investigated by means of tensile and compression tests at temperatures ranging from 700 to 850°C and strain rates of 3 × 10−4 to 0.3 s−1. The deformation tests are performed after austenitization and cooling to test temperature. The so-called second ductility minimum is located around 750°C for all strain rates except for the highest one, where no ductility trough is observed. Ductility steadily increases with strain rate at a given temperature, and the fracture mode progressively changes from intergranular to transgranular. In the region of minimum ductility, intergranular cracking occurs at low strain rates by void nucleation, growth and coalescence within thin layers of deformation induced ferrite covering the austenite grain boundaries. Cracking is favoured by V(C,N) precipitation associated with the γ/α phase transformation. Ductility remains low above the temperature of minimum ductility, where no apparent ferrite formation is observed (790 °C). Void formation takes place as a result of grain boundary sliding in combination with matrix and grain boundary precipitation. These voids are able to grow and link up forming intergranular cracks. Ductility increases with strain rate mainly due to the short time available for precipitation as well as for intergranular void growth and coalescence