Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Harrer, Bernhard

  • Google
  • 1
  • 4
  • 21

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2012Influence of Strain Rate on Hot Ductility of a V-Microalloyed Steel Slab21citations

Places of action

Chart of shared publication
Ilie, Sergiu
1 / 18 shared
Großeiber, Simon
1 / 2 shared
Degischer, Hans Peter
1 / 5 shared
Poletti, Maria Cecilia
1 / 79 shared
Chart of publication period
2012

Co-Authors (by relevance)

  • Ilie, Sergiu
  • Großeiber, Simon
  • Degischer, Hans Peter
  • Poletti, Maria Cecilia
OrganizationsLocationPeople

article

Influence of Strain Rate on Hot Ductility of a V-Microalloyed Steel Slab

  • Ilie, Sergiu
  • Harrer, Bernhard
  • Großeiber, Simon
  • Degischer, Hans Peter
  • Poletti, Maria Cecilia
Abstract

The hot ductility and malleability of a vanadium-microalloyed steel is investigated by means of tensile and compression tests at temperatures ranging from 700 to 850°C and strain rates of 3 × 10−4 to 0.3 s−1. The deformation tests are performed after austenitization and cooling to test temperature. The so-called second ductility minimum is located around 750°C for all strain rates except for the highest one, where no ductility trough is observed. Ductility steadily increases with strain rate at a given temperature, and the fracture mode progressively changes from intergranular to transgranular. In the region of minimum ductility, intergranular cracking occurs at low strain rates by void nucleation, growth and coalescence within thin layers of deformation induced ferrite covering the austenite grain boundaries. Cracking is favoured by V(C,N) precipitation associated with the γ/α phase transformation. Ductility remains low above the temperature of minimum ductility, where no apparent ferrite formation is observed (790 °C). Void formation takes place as a result of grain boundary sliding in combination with matrix and grain boundary precipitation. These voids are able to grow and link up forming intergranular cracks. Ductility increases with strain rate mainly due to the short time available for precipitation as well as for intergranular void growth and coalescence

Topics
  • impedance spectroscopy
  • grain
  • phase
  • grain boundary
  • crack
  • steel
  • compression test
  • precipitation
  • forming
  • void
  • ductility
  • vanadium