Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Remmerswaal, Willemijn H. M.

  • Google
  • 7
  • 30
  • 103

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2024Unraveling the Positive Effects of Glycine Hydrochloride on the Performance of Pb–Sn-Based Perovskite Solar Cellscitations
  • 2024Unraveling the Positive Effects of Glycine Hydrochloride on the Performance of Pb–Sn-Based Perovskite Solar Cellscitations
  • 2024Identifying the Nature and Location of Defects in n–i–p Perovskite Cells with Highly Sensitive Sub-Bandgap Photocurrent Spectroscopy1citations
  • 2024Quantifying Non-Radiative Recombination in Passivated Wide-Bandgap Metal Halide Perovskites Using Absolute Photoluminescence Spectroscopy15citations
  • 20233D Perovskite Passivation with a Benzotriazole-Based 2D Interlayer for High-Efficiency Solar Cells9citations
  • 20233D perovskite passivation with a benzotriazole-based 2D interlayer for high-efficiency solar cells9citations
  • 2022Monolithic All-Perovskite Tandem Solar Cells with Minimized Optical and Energetic Losses69citations

Places of action

Chart of shared publication
Bannenberg, Lars J.
1 / 3 shared
Savenije, Tom J.
2 / 36 shared
Wienk, Martijn M.
7 / 41 shared
Kessels, Lana M.
2 / 2 shared
Bellini, Laura
2 / 3 shared
Janssen, René A. J.
7 / 151 shared
Bannenberg, Lars
1 / 12 shared
Poll, Lara M. Van Der
1 / 1 shared
Van Gorkom, Bas T.
4 / 10 shared
Aalbers, Guus J. W.
1 / 1 shared
Fun, Stacey H. W.
1 / 1 shared
Zhang, Dong
2 / 6 shared
Gompel, Wouter T. M. Van
1 / 2 shared
Maufort, Arthur
2 / 8 shared
Orri, Jordi Ferrer
2 / 6 shared
Kusch, Gunnar
2 / 20 shared
Caiazzo, Alessandro
2 / 5 shared
Hecke, Kristof Van
1 / 11 shared
Wang, Junke
3 / 11 shared
Li, Junyu
2 / 9 shared
Oliver, R. A.
2 / 18 shared
Stranks, Samuel D.
2 / 101 shared
Lutsen, Laurence
2 / 93 shared
Vanderzande, Dirk
2 / 88 shared
Ducati, Caterina
2 / 34 shared
Van Gompel, Wouter T. M.
1 / 6 shared
Van Hecke, Kristof
1 / 19 shared
Weijtens, Christ H. L.
1 / 10 shared
Zardetto, Valerio
1 / 5 shared
Datta, Kunal
1 / 7 shared
Chart of publication period
2024
2023
2022

Co-Authors (by relevance)

  • Bannenberg, Lars J.
  • Savenije, Tom J.
  • Wienk, Martijn M.
  • Kessels, Lana M.
  • Bellini, Laura
  • Janssen, René A. J.
  • Bannenberg, Lars
  • Poll, Lara M. Van Der
  • Van Gorkom, Bas T.
  • Aalbers, Guus J. W.
  • Fun, Stacey H. W.
  • Zhang, Dong
  • Gompel, Wouter T. M. Van
  • Maufort, Arthur
  • Orri, Jordi Ferrer
  • Kusch, Gunnar
  • Caiazzo, Alessandro
  • Hecke, Kristof Van
  • Wang, Junke
  • Li, Junyu
  • Oliver, R. A.
  • Stranks, Samuel D.
  • Lutsen, Laurence
  • Vanderzande, Dirk
  • Ducati, Caterina
  • Van Gompel, Wouter T. M.
  • Van Hecke, Kristof
  • Weijtens, Christ H. L.
  • Zardetto, Valerio
  • Datta, Kunal
OrganizationsLocationPeople

article

Unraveling the Positive Effects of Glycine Hydrochloride on the Performance of Pb–Sn-Based Perovskite Solar Cells

  • Savenije, Tom J.
  • Wienk, Martijn M.
  • Kessels, Lana M.
  • Bellini, Laura
  • Bannenberg, Lars
  • Poll, Lara M. Van Der
  • Remmerswaal, Willemijn H. M.
  • Janssen, René A. J.
Abstract

Additives are commonly used to increase the performance of metal-halide perovskite solar cells, but detailed information on the origin of the beneficial outcome is often lacking. Herein, the effect of glycine hydrochloride is investigated when used as an additive during solution processing of narrow-bandgap mixed Pb–Sn perovskites. By combining the characterization of the photovoltaic performance and stability under illumination, with determining the quasi-Fermi level splitting, time-resolved microwave conductivity (TRMC), and morphological and elemental analysis a comprehensive insight is obtained. Glycine hydrochloride is able to retard the oxidation of Sn2+ in the precursor solution, and at low concentrations (1–2 mol%) it improves the grain size distribution and crystallization of the perovskite, causing a smoother and more compact layer, reducing non-radiative recombination, and enhancing the lifetime of photogenerated charges. These improve the photovoltaic performance and have a positive effect on stability. By determining the quasi-Fermi level splitting on perovskite layers without and with charge transport layers it is found that glycine hydrochloride primarily improves the bulk of the perovskite layer and does not contribute significantly to passivation of the interfaces of the perovskite with either the hole or electron transport layer (ETL).

Topics
  • perovskite
  • impedance spectroscopy
  • grain
  • grain size
  • crystallization
  • elemental analysis
  • solution processing
  • time-resolved microwave conductivity