Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lüer, Larry

  • Google
  • 7
  • 57
  • 127

Friedrich-Alexander-Universität Erlangen-Nürnberg

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2024In Situ Probing the Crystallization Kinetics in Gas‐Quenching‐Assisted Coating of Perovskite Films15citations
  • 2024Inverse design workflow discovers hole-transport materials tailored for perovskite solar cells37citations
  • 2024Inverse design workflow discovers hole-transport materials tailored for perovskite solar cells37citations
  • 2024Self-driving AMADAP laboratory: Accelerating the discovery and optimization of emerging perovskite photovoltaics2citations
  • 2024Unveiling the Role of BODIPY Dyes as Small‐Molecule Hole Transport Material in Inverted Planar Perovskite Solar Cells4citations
  • 2023Enhancing Planar Inverted Perovskite Solar Cells with Innovative Dumbbell‐Shaped HTMs: A Study of Hexabenzocoronene and Pyrene‐BODIPY‐Triarylamine Derivatives10citations
  • 2021Understanding the Microstructure Formation of Polymer Films by Spontaneous Solution Spreading Coating with a High‐Throughput Engineering Platform22citations

Places of action

Chart of shared publication
Brabec, Christoph J.
4 / 36 shared
Ronsin, Olivier J. J.
1 / 3 shared
Corre, Vincent M. Le
1 / 4 shared
Qiu, Shudi
1 / 1 shared
Zhang, Kaicheng
3 / 6 shared
Dong, Lirong
1 / 1 shared
Majewski, Martin
1 / 1 shared
Jang, Dongju
1 / 1 shared
Cerrillo, José Garcia
1 / 1 shared
Du, Tian
1 / 2 shared
Guo, Fei
1 / 3 shared
Harting, Jens
1 / 5 shared
Yang, Fu
1 / 2 shared
Egelhaaf, Hansjoachim
1 / 1 shared
Wu, Jianchang
5 / 7 shared
Guldi, Dirk
1 / 1 shared
Luo, Junsheng
2 / 4 shared
Park, Byung-Wook
2 / 4 shared
Barabash, Anastasia
2 / 5 shared
Hauch, Jens
5 / 16 shared
Wang, Yunuo
3 / 4 shared
Ortiz, Juan S. Rocha
1 / 1 shared
Zhao, Yicheng
2 / 6 shared
Reiser, Patrick
2 / 6 shared
Wang, Luyao
2 / 6 shared
Friederich, Pascal
2 / 9 shared
Torresi, Luca
2 / 3 shared
Rodriguez, M. Eugenia Perez-Ojeda
1 / 1 shared
Hu, Manman
2 / 3 shared
Seok, Sang Il
2 / 6 shared
Xie, Zhiqiang
2 / 5 shared
Brabec, Cj
2 / 407 shared
Deng, Lin-Long
2 / 2 shared
Zhang, Jiyun
4 / 8 shared
Guldi, Dirk M.
2 / 21 shared
Pérez-Ojeda, M. Eugenia
1 / 3 shared
Rocha-Ortiz, Juan S.
1 / 2 shared
Raievska, Oleksandra
1 / 5 shared
Stroyuk, Oleksandr
1 / 5 shared
Brabec, Christoph
1 / 5 shared
Seoneray, Isabel
1 / 1 shared
Barabash, Anastasiia
2 / 8 shared
Rocha Ortiz, Juan Sebastian
2 / 2 shared
Bornschlegl, Andreas Josef
1 / 1 shared
Cabanillas, Salvador Leon
1 / 1 shared
Wenzel, Jonas
1 / 1 shared
Bornschlegl, Andreas J.
1 / 1 shared
Wollny, Annasophie
1 / 1 shared
Ortiz, Alejandro
1 / 1 shared
Insuasty, Alberto
1 / 1 shared
Hirsch, Andreas
1 / 31 shared
Zhang, Heyi
1 / 1 shared
Li, Ning
1 / 16 shared
Langner, Stefan
1 / 7 shared
Wang, Rong
1 / 4 shared
Heumueller, Thomas
1 / 3 shared
Forberich, Karen
1 / 7 shared
Chart of publication period
2024
2023
2021

Co-Authors (by relevance)

  • Brabec, Christoph J.
  • Ronsin, Olivier J. J.
  • Corre, Vincent M. Le
  • Qiu, Shudi
  • Zhang, Kaicheng
  • Dong, Lirong
  • Majewski, Martin
  • Jang, Dongju
  • Cerrillo, José Garcia
  • Du, Tian
  • Guo, Fei
  • Harting, Jens
  • Yang, Fu
  • Egelhaaf, Hansjoachim
  • Wu, Jianchang
  • Guldi, Dirk
  • Luo, Junsheng
  • Park, Byung-Wook
  • Barabash, Anastasia
  • Hauch, Jens
  • Wang, Yunuo
  • Ortiz, Juan S. Rocha
  • Zhao, Yicheng
  • Reiser, Patrick
  • Wang, Luyao
  • Friederich, Pascal
  • Torresi, Luca
  • Rodriguez, M. Eugenia Perez-Ojeda
  • Hu, Manman
  • Seok, Sang Il
  • Xie, Zhiqiang
  • Brabec, Cj
  • Deng, Lin-Long
  • Zhang, Jiyun
  • Guldi, Dirk M.
  • Pérez-Ojeda, M. Eugenia
  • Rocha-Ortiz, Juan S.
  • Raievska, Oleksandra
  • Stroyuk, Oleksandr
  • Brabec, Christoph
  • Seoneray, Isabel
  • Barabash, Anastasiia
  • Rocha Ortiz, Juan Sebastian
  • Bornschlegl, Andreas Josef
  • Cabanillas, Salvador Leon
  • Wenzel, Jonas
  • Bornschlegl, Andreas J.
  • Wollny, Annasophie
  • Ortiz, Alejandro
  • Insuasty, Alberto
  • Hirsch, Andreas
  • Zhang, Heyi
  • Li, Ning
  • Langner, Stefan
  • Wang, Rong
  • Heumueller, Thomas
  • Forberich, Karen
OrganizationsLocationPeople

article

Unveiling the Role of BODIPY Dyes as Small‐Molecule Hole Transport Material in Inverted Planar Perovskite Solar Cells

  • Lüer, Larry
  • Wu, Jianchang
  • Seoneray, Isabel
  • Barabash, Anastasiia
  • Hauch, Jens
  • Wang, Yunuo
  • Brabec, Cj
  • Rocha Ortiz, Juan Sebastian
  • Bornschlegl, Andreas Josef
Abstract

<jats:p>Perovskite solar cells (PSCs) have become a research hotspot since their dramatic increase in power conversion efficiency (PCE), surpassing 26% due to advances in cell engineering and interfacial layers. Within the last factor, hole transporting materials play a crucial role in enhancing device performance and stability. Among several molecular building blocks, BODIPYs are attractive for the design of novel hole transporting material (HTMs) due to their outstanding photophysical and charge transport properties easily tuned by synthetic modifications. Herein, the synthesis of five new BODIPY‐based HTMs <jats:bold>PyBDP 1–5</jats:bold> are reported, functionalized at the meso‐ and α‐ positions with pyrenyl and arylamino units, respectively. The resulting compounds exhibit broad absorption in the visible region, remarkable thermal stability, narrow bandgaps, suitable energy levels, and good hole extraction capability, as subtracted from experimental and computational characterizations. The performance of the BODIPY derivatives as HTMs is evaluated in planar inverted (p‐<jats:italic>i</jats:italic>‐n) PSCs and compared to commonly used PTAA, resulting in highly efficient systems, reaching PCEs very close to that obtained with the reference polymer (21.51%). The incorporation of these BODIPY‐based HTMs result in an outstanding PCE of 20.37% for devices including <jats:bold>PyBDP‐1</jats:bold> and 19.97% for devises containing <jats:bold>PyBDP‐3</jats:bold>, thus demonstrating that BODIPY derivatives are a promising alternative to obtain simple and efficient organic HTMs.</jats:p>

Topics
  • perovskite
  • impedance spectroscopy
  • compound
  • polymer
  • extraction
  • interfacial
  • power conversion efficiency