Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Diercks, Alexander

  • Google
  • 3
  • 33
  • 147

Karlsruhe Institute of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Hybrid Two‐Step Inkjet‐Printed Perovskite Solar Cells6citations
  • 2024Triple-junction perovskite–perovskite–silicon solar cells with power conversion efficiency of 24.4%citations
  • 2023Evaporated Self‐Assembled Monolayer Hole Transport Layers: Lossless Interfaces in <i>p‐i‐n</i> Perovskite Solar Cells141citations

Places of action

Chart of shared publication
Eggers, Helge
1 / 3 shared
Sutter, Johannes
1 / 1 shared
Welle, Alexander
1 / 47 shared
Petry, Julian
1 / 1 shared
Schackmar, Fabian
3 / 8 shared
Pappenberger, Ronja
1 / 2 shared
Lemmer, Ulrich
1 / 3 shared
Pesch, Raphael
1 / 1 shared
Paetzold, Ulrich Wilhelm
2 / 19 shared
Feeney, Thomas
2 / 6 shared
Peibst, Robby
1 / 6 shared
Gota, Fabrizio
1 / 4 shared
Rienäcker, Michael
1 / 1 shared
Laufer, Felix
2 / 7 shared
Jin, Qihao
1 / 3 shared
Moghadamzadeh, Somayeh
1 / 3 shared
Pan, Ting
1 / 1 shared
Hu, Hang
1 / 4 shared
Orooji, Seyedamir
1 / 2 shared
An, Sophie X.
1 / 2 shared
Singh, Roja
2 / 3 shared
Nejand, Bahram Abdollahi
2 / 5 shared
Li, Yang
2 / 24 shared
Paetzold, Ulrich W.
1 / 17 shared
Starke, Ulrich
1 / 5 shared
Hossain, Ihteaz M.
1 / 4 shared
Hentschel, Mario
1 / 3 shared
Küster, Kathrin
1 / 4 shared
Ritzer, David B.
1 / 3 shared
Ruizpreciado, Marco A.
1 / 1 shared
Fassl, Paul
1 / 8 shared
Farag, Ahmed
1 / 3 shared
Bäuerle, Rainer
1 / 1 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Eggers, Helge
  • Sutter, Johannes
  • Welle, Alexander
  • Petry, Julian
  • Schackmar, Fabian
  • Pappenberger, Ronja
  • Lemmer, Ulrich
  • Pesch, Raphael
  • Paetzold, Ulrich Wilhelm
  • Feeney, Thomas
  • Peibst, Robby
  • Gota, Fabrizio
  • Rienäcker, Michael
  • Laufer, Felix
  • Jin, Qihao
  • Moghadamzadeh, Somayeh
  • Pan, Ting
  • Hu, Hang
  • Orooji, Seyedamir
  • An, Sophie X.
  • Singh, Roja
  • Nejand, Bahram Abdollahi
  • Li, Yang
  • Paetzold, Ulrich W.
  • Starke, Ulrich
  • Hossain, Ihteaz M.
  • Hentschel, Mario
  • Küster, Kathrin
  • Ritzer, David B.
  • Ruizpreciado, Marco A.
  • Fassl, Paul
  • Farag, Ahmed
  • Bäuerle, Rainer
OrganizationsLocationPeople

article

Hybrid Two‐Step Inkjet‐Printed Perovskite Solar Cells

  • Eggers, Helge
  • Diercks, Alexander
  • Sutter, Johannes
  • Welle, Alexander
  • Petry, Julian
  • Schackmar, Fabian
  • Pappenberger, Ronja
  • Lemmer, Ulrich
  • Pesch, Raphael
  • Paetzold, Ulrich Wilhelm
Abstract

Perovskite photovoltaics are on their way to commercialization, but crucial advancements are still required to realize scalable and reliable fabrication processes. Concerning solution-processing of perovskite top solar cells, the hybrid two-step process offers an auspicious combination of good thin film formation control, even on textures, and high power conversion efficiencies (PCEs). Here, we address a scalable fabrication process that consists of a hybrid two-step process and combines evaporated PbI2 with inkjet-printed organic precursor materials. We show that optimizing the printing parameters enables high PCEs, high reproducibility, and the potential for conformal growth on textured silicon. The perovskite films are free of macroscopic drying effects and omit the use of toxic solvents. To achieve optimal conversion, the morphology of the PbI2 thin film and the selected resolution in the printing process are decisive. To facilitate intermixing and enable stoichiometry we introduce a DMSO vapor treatment to increase the PbI2 porosity. We demonstrate reproducible PCEs with champion devices showing 18.2% which are on par with spin-coated counterparts. The results demonstrate that the hybrid two-step process with an inkjet-printed second step is a promising scalable process for reliable and high-quality perovskite deposition even on texture, thereby paving the path toward industrialization.

Topics
  • Deposition
  • perovskite
  • impedance spectroscopy
  • thin film
  • texture
  • Silicon
  • porosity
  • drying
  • selective ion monitoring
  • solution processing