People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Friedrich, Dennis
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Resolving electron and hole transport properties in semiconductor materials by constant light-induced magneto transportcitations
- 2024Unraveling electron dynamics in p‑type indium phosphide (100): a time-resolved two-photon photoemission study
- 2024Integration of Multijunction Absorbers and Catalysts for Efficient Solar‐Driven Artificial Leaf Structures: A Physical and Materials Science Perspectivecitations
- 2024Resolving electron and hole transport properties in semiconductor materials by constant light-induced magneto transport.
- 2022Predicting Solar Cell Performance from Terahertz and Microwave Spectroscopycitations
- 2022Predicting solar cell performance from terahertz and microwave spectroscopycitations
- 2020Grain Boundaries Limit the Charge Carrier Transport in Pulsed Laser Deposited α-SnWO4 Thin Film Photoabsorberscitations
- 2018Charge carrier lifetimes in Cr-Fe-Al-O thin filmscitations
- 2018Formation and suppression of defects during heat treatment of BiVO4 photoanodes for solar water splittingcitations
- 2017Enhancing Charge Carrier Lifetime in Metal Oxide Photoelectrodes through Mild Hydrogen Treatmentcitations
- 2016Comprehensive Evaluation of CuBi2O4 as a Photocathode Material for Photoelectrochemical Water Splittingcitations
Places of action
Organizations | Location | People |
---|
article
Integration of Multijunction Absorbers and Catalysts for Efficient Solar‐Driven Artificial Leaf Structures: A Physical and Materials Science Perspective
Abstract
<jats:p> Artificial leaves could be the breakthrough technology to overcome the limitations of storage and mobility through the synthesis of chemical fuels from sunlight, which will be an essential component of a sustainable future energy system. However, the realization of efficient solar‐driven artificial leaf structures requires integrated specialized materials such as semiconductor absorbers, catalysts, interfacial passivation, and contact layers. To date, no competitive system has emerged due to a lack of scientific understanding, knowledge‐based design rules, and scalable engineering strategies. Herein, competitive artificial leaf devices for water splitting, focusing on multiabsorber structures to achieve solar‐to‐hydrogen conversion efficiencies exceeding 15%, are discussed. A key challenge is integrating photovoltaic and electrochemical functionalities in a single device. Additionally, optimal electrocatalysts for intermittent operation at photocurrent densities of 10–20 mA cm<jats:sup>−2</jats:sup> must be immobilized on the absorbers with specifically designed interfacial passivation and contact layers, so‐called buried junctions. This minimizes voltage and current losses and prevents corrosive side reactions. Key challenges include understanding elementary steps, identifying suitable materials, and developing synthesis and processing techniques for all integrated components. This is crucial for efficient, robust, and scalable devices. Herein, corresponding research efforts to produce green hydrogen with unassisted solar‐driven (photo‐)electrochemical devices are discussed and reported.</jats:p>