People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Roldan Cuenya, Beatriz
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2024Integration of Multijunction Absorbers and Catalysts for Efficient Solar‐Driven Artificial Leaf Structures: A Physical and Materials Science Perspectivecitations
- 2023<i>Operando</i> insights into correlating CO coverage and Cu–Au alloying with the selectivity of Au NP-decorated Cu<sub>2</sub>O nanocubes during the electrocatalytic CO<sub>2</sub> reductioncitations
- 2022Ir-Ni Bimetallic OER Catalysts Prepared by Controlled Ni Electrodeposition on Irpoly and Ir(111)
- 2018Influence of the Fe:Ni ratio and reaction temperature on the efficiency of (FexNi1-x)9S8 electrocatalysts applied in the hydrogen evolution reactioncitations
- 2018Ir-Ni Bimetallic OER Catalysts Prepared by Controlled Ni Electrodeposition on Irpoly and Ir(111)citations
- 2012Stability of platinum nanoparticles supported on SiO2/Si(111):a high-pressure X-ray photoelectron spectroscopy studycitations
Places of action
Organizations | Location | People |
---|
article
Integration of Multijunction Absorbers and Catalysts for Efficient Solar‐Driven Artificial Leaf Structures: A Physical and Materials Science Perspective
Abstract
<jats:p> Artificial leaves could be the breakthrough technology to overcome the limitations of storage and mobility through the synthesis of chemical fuels from sunlight, which will be an essential component of a sustainable future energy system. However, the realization of efficient solar‐driven artificial leaf structures requires integrated specialized materials such as semiconductor absorbers, catalysts, interfacial passivation, and contact layers. To date, no competitive system has emerged due to a lack of scientific understanding, knowledge‐based design rules, and scalable engineering strategies. Herein, competitive artificial leaf devices for water splitting, focusing on multiabsorber structures to achieve solar‐to‐hydrogen conversion efficiencies exceeding 15%, are discussed. A key challenge is integrating photovoltaic and electrochemical functionalities in a single device. Additionally, optimal electrocatalysts for intermittent operation at photocurrent densities of 10–20 mA cm<jats:sup>−2</jats:sup> must be immobilized on the absorbers with specifically designed interfacial passivation and contact layers, so‐called buried junctions. This minimizes voltage and current losses and prevents corrosive side reactions. Key challenges include understanding elementary steps, identifying suitable materials, and developing synthesis and processing techniques for all integrated components. This is crucial for efficient, robust, and scalable devices. Herein, corresponding research efforts to produce green hydrogen with unassisted solar‐driven (photo‐)electrochemical devices are discussed and reported.</jats:p>