Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dionigi, Fabio

  • Google
  • 5
  • 91
  • 490

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2024Integration of Multijunction Absorbers and Catalysts for Efficient Solar‐Driven Artificial Leaf Structures: A Physical and Materials Science Perspective6citations
  • 2023A Life-Cycle of Ni in Proton Exchange Membrane Fuel Cellscitations
  • 2022High Power Density Automotive Membrane Electrode Assembliescitations
  • 2020P-block single-metal-site tin/nitrogen-doped carbon fuel cell cathode catalyst for oxygen reduction reaction375citations
  • 2018A comparison of rotating disc electrode, floating electrode technique and membrane electrode assembly measurements for catalyst testing109citations

Places of action

Chart of shared publication
Strasser, Peter
5 / 21 shared
Bonastre, Alejandro M.
2 / 2 shared
Chattot, Raphaël
1 / 12 shared
Gutierrez, Martha Briceno De
1 / 2 shared
Drnec, Jakub
1 / 15 shared
Ronovský, Michal
1 / 1 shared
Fusek, Lukáš
1 / 1 shared
Pan, Lujin
2 / 2 shared
Mirolo, Marta
1 / 7 shared
Hrbek, Tomas
1 / 1 shared
Klingenhof, Malte
1 / 5 shared
Brooke, Emily
1 / 1 shared
Kubát, Jan
1 / 1 shared
Götz, Daniel
1 / 1 shared
Polani, Shlomi
1 / 1 shared
Myllymäki, Mila
1 / 1 shared
Kúš, Peter
1 / 1 shared
Dunseath, Olivia
1 / 1 shared
Sharman, Jonathan
2 / 3 shared
Martens, Isaac
1 / 9 shared
Weber, Konstantin
1 / 1 shared
Hodgkinson, Adam
1 / 1 shared
Buche, Silvain
1 / 1 shared
Spackova, Martina
1 / 1 shared
Nesling, Emily
1 / 1 shared
Gasteiger, Hubert A.
1 / 11 shared
Albert, Albert
1 / 1 shared
Brimaud, Sylvain
1 / 1 shared
Zink, Stefan
1 / 1 shared
Finkenwirth, Olav
1 / 1 shared
Loichet, Paulette A.
1 / 1 shared
Ponomarev, Ivan
1 / 1 shared
Muggli, Mark
1 / 1 shared
Barsch, Hannes
1 / 1 shared
Joerissen, Ludwig
1 / 1 shared
Rozière, Jacques
1 / 3 shared
Cavaliere, Sara
1 / 9 shared
Zaton, Marta
1 / 1 shared
Jones, Deborah J.
1 / 1 shared
Cullen, David
1 / 1 shared
Silvioli, Luca
1 / 2 shared
Jaouen, Frédéric
1 / 7 shared
Rossmeisl, Jan
1 / 51 shared
Oguz, Ismail Can
1 / 1 shared
Luo, Fang
1 / 1 shared
Wen, Ju
1 / 1 shared
Wagner, Stephan
1 / 7 shared
Sougrati, Moulay Tahar
1 / 57 shared
Mineva, Tzonka
1 / 2 shared
Kramm, Ulrike
1 / 2 shared
Zitolo, Andrea
1 / 11 shared
Teschner, Detre
1 / 9 shared
Roy, Aaron
1 / 1 shared
Martinez Bonastre, Alejandro
1 / 1 shared
Schneider, Oliver
1 / 1 shared
Hawkins, Alex
1 / 1 shared
Seidl, Lukas
1 / 2 shared
Knoll, Alois, C.
1 / 1 shared
Ercolano, Giorgio
1 / 3 shared
Sladjana, Martens
1 / 1 shared
Asen, Ludwig
1 / 1 shared
Martens, Sladjana
1 / 1 shared
Zalitis, Chris
1 / 1 shared
Jones, Deborah
1 / 12 shared
Sharman, Jonathan, D. B.
1 / 1 shared
Chart of publication period
2024
2023
2022
2020
2018

Co-Authors (by relevance)

  • Strasser, Peter
  • Bonastre, Alejandro M.
  • Chattot, Raphaël
  • Gutierrez, Martha Briceno De
  • Drnec, Jakub
  • Ronovský, Michal
  • Fusek, Lukáš
  • Pan, Lujin
  • Mirolo, Marta
  • Hrbek, Tomas
  • Klingenhof, Malte
  • Brooke, Emily
  • Kubát, Jan
  • Götz, Daniel
  • Polani, Shlomi
  • Myllymäki, Mila
  • Kúš, Peter
  • Dunseath, Olivia
  • Sharman, Jonathan
  • Martens, Isaac
  • Weber, Konstantin
  • Hodgkinson, Adam
  • Buche, Silvain
  • Spackova, Martina
  • Nesling, Emily
  • Gasteiger, Hubert A.
  • Albert, Albert
  • Brimaud, Sylvain
  • Zink, Stefan
  • Finkenwirth, Olav
  • Loichet, Paulette A.
  • Ponomarev, Ivan
  • Muggli, Mark
  • Barsch, Hannes
  • Joerissen, Ludwig
  • Rozière, Jacques
  • Cavaliere, Sara
  • Zaton, Marta
  • Jones, Deborah J.
  • Cullen, David
  • Silvioli, Luca
  • Jaouen, Frédéric
  • Rossmeisl, Jan
  • Oguz, Ismail Can
  • Luo, Fang
  • Wen, Ju
  • Wagner, Stephan
  • Sougrati, Moulay Tahar
  • Mineva, Tzonka
  • Kramm, Ulrike
  • Zitolo, Andrea
  • Teschner, Detre
  • Roy, Aaron
  • Martinez Bonastre, Alejandro
  • Schneider, Oliver
  • Hawkins, Alex
  • Seidl, Lukas
  • Knoll, Alois, C.
  • Ercolano, Giorgio
  • Sladjana, Martens
  • Asen, Ludwig
  • Martens, Sladjana
  • Zalitis, Chris
  • Jones, Deborah
  • Sharman, Jonathan, D. B.
OrganizationsLocationPeople

article

Integration of Multijunction Absorbers and Catalysts for Efficient Solar‐Driven Artificial Leaf Structures: A Physical and Materials Science Perspective

  • Paszuk, Agnieszka
  • Hofmann, Jan, P.
  • Hess, Franziska
  • Lüdge, Kathy
  • Runge, Erich
  • Wang, Dong
  • Vasquez-Montoya, Manuel
  • Dionigi, Fabio
  • Jaegermann, Wolfram
  • Cierpka, Christian
  • Favaro, Marco
  • Strasser, Peter
  • Bergmann, Arno
  • Kurniawan, Mario
  • Van De Krol, Roel
  • Shekarabi, Sahar
  • Friedrich, Dennis
  • Krischok, Stefan
  • Schaaf, Peter
  • May, Matthias
  • Lei, Yong
  • Dreßler, Christian
  • Schmidt-Grund, Rüdiger
  • Bund, Andreas
  • Schmidt, Wolf Gero
  • Zhang, Hongbin
  • Roldan Cuenya, Beatriz
  • Unger, Eva
Abstract

<jats:p> Artificial leaves could be the breakthrough technology to overcome the limitations of storage and mobility through the synthesis of chemical fuels from sunlight, which will be an essential component of a sustainable future energy system. However, the realization of efficient solar‐driven artificial leaf structures requires integrated specialized materials such as semiconductor absorbers, catalysts, interfacial passivation, and contact layers. To date, no competitive system has emerged due to a lack of scientific understanding, knowledge‐based design rules, and scalable engineering strategies. Herein, competitive artificial leaf devices for water splitting, focusing on multiabsorber structures to achieve solar‐to‐hydrogen conversion efficiencies exceeding 15%, are discussed. A key challenge is integrating photovoltaic and electrochemical functionalities in a single device. Additionally, optimal electrocatalysts for intermittent operation at photocurrent densities of 10–20 mA cm<jats:sup>−2</jats:sup> must be immobilized on the absorbers with specifically designed interfacial passivation and contact layers, so‐called buried junctions. This minimizes voltage and current losses and prevents corrosive side reactions. Key challenges include understanding elementary steps, identifying suitable materials, and developing synthesis and processing techniques for all integrated components. This is crucial for efficient, robust, and scalable devices. Herein, corresponding research efforts to produce green hydrogen with unassisted solar‐driven (photo‐)electrochemical devices are discussed and reported.</jats:p>

Topics
  • impedance spectroscopy
  • mobility
  • semiconductor
  • Hydrogen
  • interfacial