People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gatti, Teresa
Polytechnic University of Turin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Improved Hole Extraction and Band Alignment via Interface Modification in Hole Transport Material‐Free Ag/Bi Double Perovskite Solar Cellscitations
- 2024Improved Hole Extraction and Band Alignment via Interface Modification in Hole Transport Material‐Free Ag/Bi Double Perovskite Solar Cellscitations
- 2024Two-Dimensional Layered Heterojunctions for Photoelectrocatalysiscitations
- 2024Scalable Production of Metal Oxide Nanoparticles for Optoelectronics Applications
- 2024Hybrid Piezoresistive 2D MoS2/PEGDA/PANI Covalent Hydrogels for the Sensing of Low‐to‐Medium Pressurecitations
- 2023Tuning the optical properties of 2D monolayer silver-bismuth bromide double perovskite by halide substitution
- 2023Research Progress on Homogeneous Fabrication of Large-Area Perovskite Films by Spray Coatingcitations
- 2023High Open-Circuit Voltage Cs 2 AgBiBr 6 Carbon-Based Perovskite Solar Cells via Green Processing of Ultrasonic Spray-Coated Carbon Electrodes from Waste Tire Sources
- 2023Assessing the Effect of Stabilization and Carbonization Temperatures on Electrochemical Performance of Electrospun Carbon Nanofibers from Polyacrylonitrilecitations
- 2023Heavy pnictogens-based perovskite-inspired materials: Sustainable light-harvesters for indoor photovoltaicscitations
- 2022Tuning the optical properties of 2D monolayer silver-bismuth bromide double perovskite by halide substitutioncitations
- 2022Design Principles and Insights into the Liquid-Phase Exfoliation of Alpha-MoO3 for the Production of Colloidal 2D Nano-inks in Green Solventscitations
- 2022High Open‐Circuit Voltage Cs<sub>2</sub>AgBiBr<sub>6</sub> Carbon‐Based Perovskite Solar Cells via Green Processing of Ultrasonic Spray‐Coated Carbon Electrodes from Waste Tire Sourcescitations
- 2022Nanostructured 2D WS2@PANI nanohybrids for electrochemical energy storagecitations
- 2021Moisture resistance in perovskite solar cells attributed to a water-splitting layercitations
- 2020Lanthanide-Induced Photoluminescence in Lead-Free Cs2AgBiBr6 Bulk Perovskite: Insights from Optical and Theoretical Investigationscitations
- 2019A film-forming graphene/diketopyrrolopyrrole covalent hybrid with far-red optical features: Evidence of photo-stabilitycitations
- 2018Interfacial Morphology Addresses Performance of Perovskite Solar Cells Based on Composite Hole Transporting Materials of Functionalized Reduced Graphene Oxide and P3HTcitations
Places of action
Organizations | Location | People |
---|
article
Improved Hole Extraction and Band Alignment via Interface Modification in Hole Transport Material‐Free Ag/Bi Double Perovskite Solar Cells
Abstract
<jats:p>Within one decade, lead halide perovskite solar cells have reached power conversion efficiencies (PCEs) compatible with that of silicon solar cells. While in the beginning, they suffered from short device lifetimes, those have also been strongly improved over time. However, their content of toxic lead still poses a risk of environmental pollution and human health on exposure. The double perovskite (DP) Cs<jats:sub>2</jats:sub>AgBiBr<jats:sub>6</jats:sub> offers the potential to be a lead‐free alternative light‐harvesting material. Herein, the fabrication of hole transport material (HTM)‐free Cs<jats:sub>2</jats:sub>AgBiBr<jats:sub>6</jats:sub>‐based solar cells is presented, in which the DP surface is modified via a <jats:italic>n</jats:italic>‐butylammonium posttreatment to create a 2D/3D mixed interface. Additionally, the commonly utilized metal electrode and HTM are substituted with a carbon black back electrode (CBE) consisting of up‐cycled biowaste. Through the 2D/3D interface modification, charge recombination is suppressed, and band alignment is improved at the perovskite/CBE interface. Additionally, density functional theory calculations reveal that an increasing 2D modification thickness enhances the probability for holes in Cs<jats:sub>2</jats:sub>AgBiBr<jats:sub>6</jats:sub> to be located close to the perovskite/CBE interface, further supporting their extraction. Overall, the PCE of the HTM‐free solar cells is improved through the implementation of a low‐cost and end‐of‐waste fabrication strategy.</jats:p>