Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mendoza, Asiel Neftalí Corpus

  • Google
  • 1
  • 14
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Matching the photocurrent of 2‐terminal mechanically‐stacked perovskite/organic tandem solar modules by varying the cell width7citations

Places of action

Chart of shared publication
Basu, Robin
1 / 2 shared
Li, Ning
1 / 16 shared
Brabec, Christoph J.
1 / 36 shared
Brunetti, Francesca
1 / 8 shared
Distler, Andreas
1 / 6 shared
Matteocci, Fabio
1 / 19 shared
Carlo, Aldo Di
1 / 12 shared
Castriotta, Luigi Angelo
1 / 8 shared
Cerrillo, José García
1 / 1 shared
Forberich, Karen
1 / 7 shared
Yang, Fu
1 / 2 shared
Wagner, Michael
1 / 7 shared
Egelhaaf, Hans-Joachim
1 / 5 shared
Jafarzadeh, Farshad
1 / 4 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Basu, Robin
  • Li, Ning
  • Brabec, Christoph J.
  • Brunetti, Francesca
  • Distler, Andreas
  • Matteocci, Fabio
  • Carlo, Aldo Di
  • Castriotta, Luigi Angelo
  • Cerrillo, José García
  • Forberich, Karen
  • Yang, Fu
  • Wagner, Michael
  • Egelhaaf, Hans-Joachim
  • Jafarzadeh, Farshad
OrganizationsLocationPeople

article

Matching the photocurrent of 2‐terminal mechanically‐stacked perovskite/organic tandem solar modules by varying the cell width

  • Basu, Robin
  • Li, Ning
  • Brabec, Christoph J.
  • Brunetti, Francesca
  • Distler, Andreas
  • Matteocci, Fabio
  • Carlo, Aldo Di
  • Castriotta, Luigi Angelo
  • Cerrillo, José García
  • Forberich, Karen
  • Yang, Fu
  • Mendoza, Asiel Neftalí Corpus
  • Wagner, Michael
  • Egelhaaf, Hans-Joachim
  • Jafarzadeh, Farshad
Abstract

<jats:p>Photocurrent matching in conventional monolithic tandem solar cells is achieved by choosing semiconductors with complementary absorption spectra and by carefully adjusting the optical properties of the complete top and bottom stacks. However, for thin film photovoltaic technologies at the module level, another design variable significantly alleviates the task of photocurrent matching, namely the cell width, whose modification can be readily realized by the adjustment of the module layout. Herein we demonstrate this concept at the experimental level for the first time for a 2T‐mechanically stacked perovskite (FAPbBr<jats:sub>3</jats:sub>)/organic (PM6:Y6:PCBM) tandem mini‐module, an unprecedented approach for these emergent photovoltaic technologies fabricated in an independent manner. An excellent <jats:italic>I</jats:italic><jats:sub> <jats:italic>sc</jats:italic> </jats:sub> matching is achieved by tuning the cell widths of the perovskite and organic modules to 7.22 mm (<jats:italic>PCE</jats:italic><jats:sub> <jats:italic>PVKT‐mod</jats:italic> </jats:sub>= 6.69%) and 3.19 mm (<jats:italic>PCE</jats:italic><jats:sub> <jats:italic>OPV‐mod</jats:italic> </jats:sub>= 12.46%), respectively, leading to a champion efficiency of 14.94% for the tandem module interconnected in series with an aperture area of 20.25 cm<jats:sup>2</jats:sup>. Rather than demonstrating high efficiencies at the level of small lab cells, our successful experimental proof‐of‐concept at the module level proves to be particularly useful to couple devices with non‐complementary semiconductors, either in series or in parallel electrical connection, hence overcoming the limitations imposed by the monolithic structure.</jats:p><jats:p>This article is protected by copyright. All rights reserved.</jats:p>

Topics
  • perovskite
  • impedance spectroscopy
  • thin film
  • semiconductor