People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Siffalovic, Peter
Centre of Excellence for Advanced Materials Application
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Organic light-emitting diodes comprising an undoped thermally activated delayed fluorescence emissive layer and a thick inorganic perovskite hole transport layer
- 2024Unraveling Bulk versus Surface Passivation Effects in Highly Efficient p–<i>i</i>–n Perovskite Solar Cells Using Thiophene‐Based Cationscitations
- 2024Deciphering the Formation Process of 2D to 3D Halide Perovskite Thin Films
- 2024A dual strategy to enhance the photoelectric performance of Perovskite-Based photodetectors for potential applications in optical communicationscitations
- 2024Pizza oven processing of organohalide perovskites (POPOP): a simple, versatile and efficient vapor deposition methodcitations
- 2024Organic Light-Emitting Diodes Comprising an Undoped Thermally Activated Delayed Fluorescence Emissive Layer and a Thick Inorganic Perovskite Hole Transport Layer
- 2022A wide-angle X-ray scattering laboratory setup for tracking phase changes of thin films in a chemical vapor deposition chambercitations
- 2022Improved Properties of Li-Ion Battery Electrodes Protected By Al2O3 and ZnO Ultrathin Layers Prepared By Atomic Layer Depositioncitations
- 2021Early-stage growth observations of orientation-controlled vacuum-deposited naphthyl end-capped oligothiophenescitations
- 2021Early-stage growth observations of orientation-controlled vacuum-deposited naphthyl end-capped oligothiophenescitations
- 2021Early-stage growth observations of orientation-controlled vacuum-deposited naphthyl end-capped oligothiophenescitations
- 2020Surface-Controlled Crystal Alignment of Naphthyl End-Capped Oligothiophene on Graphene: Thin-Film Growth Studied by In Situ X-ray Diffractioncitations
- 2020Surface-Controlled Crystal Alignment of Naphthyl End-Capped Oligothiophene on Graphene: Thin-Film Growth Studied by in Situ X-ray Diffractioncitations
- 2019Polyethylene glycol-modified poly(styrene-co-ethylene/butylene-co-styrene)/carbon nanotubes composite for humidity sensing
Places of action
Organizations | Location | People |
---|
article
Unraveling Bulk versus Surface Passivation Effects in Highly Efficient p–<i>i</i>–n Perovskite Solar Cells Using Thiophene‐Based Cations
Abstract
<jats:p>Defect passivation is nowadays considered a must‐have route for high‐efficiency perovskite solar cells. However, a general rule that correlates the choice of passivating agents with performance enhancements is still missing. Herein, two different thiophene salts that are used as passivating agents are compared, namely thiophene methylammonium chloride and thiophene ethylammonium chloride (TEACl), which are used for the passivation of bulk and surface defects in triple‐cation‐based metal halide perovskites. First, it is observed that the surface passivation method leads to better device performances reaching a power conversion efficiency of 23.56%, with reduced voltage losses and increased fill factor when compared with the reference. Second, it is demonstrated that the chemical structure of the cation dictates its capability either in passivating bulk defects effectively or to form a superficial two‐dimensional/three‐dimensional heterostructure, which happens only for the TEACl case. The chemical composition and the cation dimension are responsible for device performance enhancement as observed by a joint spectroscopic and density functional theory simulations study, providing rational guidelines for further smart device design.</jats:p>